MATH 525a SAMPLE MIDTERM SOLUTIONS FALL 2016 Prof. Alexander

(1) For x < y in A, we have $s(x) \le y$ (by definition of successor), so I_x and I_y are disjoint. Hence $\{I_x : x \in A\}$ is a collection of disjoint open intervals so is at most countable (because each interval contains a rational.)

(2)(a) A is μ^* -measurable if for every $E \subset X$, we have $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$. (b) In the text.

(3) Let $\epsilon > 0$. By uniform integrability, there exists $\delta > 0$ such that

$$\mu(A) < \delta \implies \int_{A} |f_n| \ d\mu < \epsilon \quad \text{for all } n.$$
(1)

Let $E_n = \{x : |f_n(x)| > \epsilon\}$. Since $f_n \to 0$ in measure, we have $\mu(E_n) \to 0$. Therefore for large *n* we have $\mu(E_n) < \delta$ and hence by (1), $\int_{E_n} |f_n| < \epsilon$. Therefore

$$\int |f_n| = \int_{E_n} |f_n| + \int_{E_n^c} |f_n|$$
$$< \epsilon + \int_{E_n^c} \epsilon \ d\mu$$
$$= \epsilon + \epsilon \mu(E_n^c)$$
$$\le \epsilon + \epsilon \mu(X).$$

Since ϵ is arbitrary, this shows $\int |f_n| \to 0$.

(4) Suppose $E_1, E_2, \dots \in \mathcal{C}$ and let $\epsilon > 0$. For each j there exists $A_j \in \mathcal{A}$ with $A_j \supset E_j$ and $\mu(A_j \setminus E_j) < \epsilon/2^j$. For a given N we can approximate $\bigcap_{j=1}^{\infty} E_j$ by $\bigcap_{j=1}^{N} A_j$ as follows: we have

$$\bigcap_{j=1}^{\infty} E_j \subset \bigcap_{j=1}^{N} E_j \subset \bigcap_{j=1}^{N} A_j,$$

 \mathbf{SO}

$$\mu\left(\left(\bigcap_{j=1}^{N}A_{j}\right)\setminus\left(\bigcap_{j=1}^{\infty}E_{j}\right)\right) = \mu\left(\left(\bigcap_{j=1}^{N}A_{j}\right)\setminus\left(\bigcap_{j=1}^{N}E_{j}\right)\right) + \mu\left(\left(\bigcap_{j=1}^{N}E_{j}\right)\setminus\left(\bigcap_{j=1}^{\infty}E_{j}\right)\right)\right) \\
\leq \sum_{j=1}^{N}\mu(A_{j}\setminus E_{j}) + \mu\left(\left(\bigcap_{j=1}^{N}E_{j}\right)\setminus\left(\bigcap_{j=1}^{\infty}E_{j}\right)\right) \\
< \sum_{j=1}^{N}\frac{\epsilon}{2^{j}} + \mu\left(\left(\bigcap_{j=1}^{N}E_{j}\right)\setminus\left(\bigcap_{j=1}^{\infty}E_{j}\right)\right) \\
< \epsilon + \mu\left(\left(\bigcap_{j=1}^{N}E_{j}\right)\setminus\left(\bigcap_{j=1}^{\infty}E_{j}\right)\right).$$
(2)

The sets $(\bigcap_{j=1}^{N} E_j) \setminus (\bigcap_{j=1}^{\infty} E_j)$ decrease to ϕ as $N \to \infty$, and $\mu(X) < \infty$, so by continuity from above,

$$\mu\left((\bigcap_{j=1}^N E_j) \setminus (\bigcap_{j=1}^\infty E_j)\right) \to 0.$$

Therefore for N large we have $\mu\left((\bigcap_{j=1}^{N} E_j) \setminus (\bigcap_{j=1}^{\infty} E_j)\right) < \epsilon$. Putting this in (2) we get

$$\mu\left(\left(\bigcap_{j=1}^{N} A_{j}\right) \setminus \left(\bigcap_{j=1}^{\infty} E_{j}\right)\right) < 2\epsilon.$$

Since ϵ is arbitrary and $\bigcap_{j=1}^{N} A_j \in \mathcal{A}$, this shows $\bigcap_{j=1}^{\infty} E_j$ is approximable from outside by \mathcal{A} .