MATH 525a ASSIGNMENT 8

FALL 2016
Prof. Alexander
Due Wednesday November 16.

Chapter $3 \# 11,12,16,19$ (second part only-show $\nu \ll \lambda \Longleftrightarrow|\nu| \ll \lambda), 25$ and:
(I)(a) Let m be Lebesgue measure. Suppose ν is a finite measure on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$, and $\alpha=$ $\sup \left\{\frac{\nu(E)}{m(E)}: E \in \mathcal{M}, m(E)>0\right\}<\infty$. Show that ν is absolutely continuous with respect to m.
(b) For $A, B \in \mathcal{B}_{\mathbb{R}}$ we say A is an m-essential subset of B if there exists $N \in \mathcal{B}_{\mathbb{R}}$ with $m(N)=0$ and $A \backslash N \subset B$. Suppose there exists at least one set which achieves the supremum in (b). Show that the sets on which the supremum is achieved can be characterized as follows: there exists a measurable set Y such that the supremum is achieved on F if and only if F is an m-essential subset of Y. (In other words, up to null sets, Y is the largest set on which the sup is achieved.)
(c) Give an example of a ν for which $d \nu / d m$ is bounded but the supremum in (a) is not achieved.
(II) Let us say that two signed measures ν_{1}, ν_{2} on (X, \mathcal{M}) are compatible if there exists a decomposition $X=P \cup N$ which is a Hahn decomposition for both ν_{1} and ν_{2}. According to Proposition 3.14 page 94 , for ν_{1}, ν_{2} finite signed measures,

$$
(*) \quad\left|\nu_{1}+\nu_{2}\right|(E) \leq\left|\nu_{1}\right|(E)+\left|\nu_{2}\right|(E) \quad \text { for all } E .
$$

Let $\mu=\left|\nu_{1}\right|+\left|\nu_{2}\right|$ and let $f_{j}=\frac{d \nu_{j}}{d \mu}, j=1,2$. We write $\left\{f_{j}>0\right\}$ as a shorthand for $\left\{x \in X: f_{j}(x)>0\right\}$, and similarly for $\left\{f_{j}<0\right\}$. Show that the following are equivalent:
(i) ν_{1} and ν_{2} are compatible;
(ii) equality holds in $(*)$ for all E;
(iii) $\mu\left(\left\{f_{1}>0\right\} \cap\left\{f_{2}<0\right\}\right)=\mu\left(\left\{f_{1}<0\right\} \cap\left\{f_{2}>0\right\}\right)=0$.
(III) Let μ be a finite signed measure on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ with $\mu \ll m$, let E be a Borel set in \mathbb{R} and let $G(x)=\mu((-\infty, x] \cap E)$. Here m denotes Lebesgue measure. Show that a.e. in E^{c}, $G^{\prime}=0$. (This includes showing that G^{\prime} exists a.e. in E^{c}.)
(IV) A measure ρ is called semifinite if for every measurable set E with $\rho(E)=\infty$, there is a measurable $F \subset E$ with $0<\rho(F)<\infty$. Suppose $0<f<\infty$ and $d \nu=f d \mu$. Show that if ν is semifinite, then μ is semifinite.

HINTS:

(11)(a) Why is a single function uniformly integrable?
(b) $\left|f_{n}\right| \leq|f|+\left|f_{n}-f\right|$.
(12) In general, to show $d \alpha / d \beta=f$ for some particular f, you must show $\alpha(E)=\int_{E} f d \beta$ for all E. It may be enough to verify this just for a limited class of E 's.
(16) What is $\frac{d \mu}{d \lambda}+\frac{d \nu}{d \lambda}$? Is $1-f$ a Radon-Nikodym derivative of something? Show

$$
f=\frac{d \nu}{d \mu}(1-f)
$$

(25)(a) This is very quick and easy if you look at it correctly.
(b) Consider of corner of a set, say in the plane. An example where $D_{E}(x)$ doesn't exist is more difficult (I think) - construct a set $E \subset \mathbb{R}$ such that the ratio in the definition of $D_{E}(0)$ oscillates between two values as $r \rightarrow 0$.
(I)(b) This is a tricky one - try it but don't spend forever on it! What can you say about the values of the function $d \nu / d m$ on the set Y ? So, describe Y in terms of $d \nu / d m$ values. What happens if $d \nu / d m$ is unbounded?
(II) Show (i) \Leftrightarrow (iii) and (ii) \Leftrightarrow (iii). To show (ii) implies (iii), show "not (iii)" implies "not (ii)."
(III) This is a short application of one of the main theorems.

