MATH 525a ASSIGNMENT 7 SOLUTIONS
 FALL 2016
 Prof. Alexander

Chapter 2

(46) For fixed $y, \chi_{D}(x, y)=1$ only for one x, so $\int \chi_{D}(x, y) \mu(d x)=0$. Hence $\iint \chi_{D} d \mu d \nu=$ 0.

For fixed $x, \chi_{D}(x, y)=1$ for exactly one y, so $\int \chi_{D}(x, y) \nu(d y)=1$. Hence $\iint \chi_{D} d \nu d \mu=$ 1.

Now

$$
\begin{equation*}
(\mu \times \nu)(D)=(\mu \times \nu)^{*}(D)=\inf \left\{\sum_{j=1}^{\infty}(\mu \times \nu)\left(E_{j}\right): D \subset \cup_{j} E_{j}, E_{j} \in \mathcal{A} \text { for all } \mathcal{A}\right\} \tag{*}
\end{equation*}
$$

where \mathcal{A} is the algebra \{all finite unions of disjoint rectangles\}. In fact the inf doesn't change if we restrict each E_{j} to be just one rectangle. But for every rectangle $E_{j}=A_{j} \times B_{j}$ with $\operatorname{card}\left(E_{j} \cap D\right)>1, A_{j}$ and B_{j} must be intervals of positive length so $(\mu \times \nu)\left(E_{j}\right)=$ $\mu\left(A_{j}\right) \nu\left(B_{j}\right)=\mu\left(A_{j}\right) \cdot \infty=\infty$. Since D is uncountable, a least one E_{j} must have card $\left(E_{j} \cap\right.$ $D)>1$, so $(\mu \times \nu)\left(E_{j}\right)=\infty$. Thus $\int \chi_{D} d(\mu \times \nu)=(\mu \times \nu)(D)=\infty$, by $\left(^{*}\right)$.
(48) Since $|f| \geq 0$, by Tonelli's Theorem (2.37a) we have

$$
\int|f| d(\mu \times \nu)=\iint f(m, n) \mu(d m) \nu(d n)=\int 2 \nu(d n)=2 \nu(\mathbb{N})=\infty
$$

But $\int f(m, n) \mu(d m)=1+(-1)=0$ for all n, so $\iint f d \mu d \nu=0$, while

$$
\int f(m, n) \nu(d n)=\left\{\begin{array}{ll}
1 & \text { if } m=1 \\
1+(-1)=0 & \text { if } m \geq 2
\end{array}=\chi_{\{1\}}(m)\right.
$$

so $\iint f d \nu d \mu=\int \chi_{\{1\}} d \mu=1$.
(51)(a) Let $h_{1}(x, y)=f(x), h_{2}(x, y)=g(y)$. For $E \in \mathcal{B}_{\mathbb{C}}$ we have $h_{1}^{-1}(E)=f^{-1}(E) \times \mathbb{C} \in$ $\mathcal{M} \times \mathcal{N}, h_{2}^{-1}(E)=\mathbb{C} \times g^{-1}(E) \in \mathcal{M} \times \mathcal{N}$. Thus h_{1}, h_{2} are $\mathcal{M} \times \mathcal{N}$-measurable. Hence by Proposition 2.6, so is $h=h_{1} h_{2}$.
(b) Let $\tilde{X}=\{x \in X: f(x) \neq 0\}, \tilde{Y}=\{y \in Y: g(y) \neq 0\}$. The the restrictions to \tilde{X} and \tilde{Y} are σ-finite, since $f, g \in L^{1}$. It is enough to consider f, g as functions on \tilde{X}, \tilde{Y}, so we may
assume X, Y are σ-finite. Then by Tonelli's Theorem (2.37a),

$$
\begin{align*}
\int|h| d \nu & =\iint|f(x)||g(y)| \mu(d x) \nu(d y) \\
& =\int|g(y)|\left(\int|f| d \mu\right) \nu(d y) \\
& =\left(\int|f| d \mu\right)\left(\int|g| d \nu\right) \\
& <\infty \tag{1}
\end{align*}
$$

so $h \in L^{1}(\mu \times \nu)$. Therefore we can repeat (??) without absolute values, which shows

$$
\int h d(\mu \times \nu)=\left(\int f d \mu\right)\left(\int g d \nu\right)
$$

Chapter 3

(2) Let $X=P \cup N$ be the Hahn decomposition. Then

$$
\begin{align*}
E \text { is } \nu \text {-null } & \Longleftrightarrow \nu(F)=0 \quad \text { for all (measurable) } F \subset E \\
& \Longleftrightarrow \nu(F \cap P)=\nu(F \cap N)=0 \text { for all } F \subset E \\
& \Longleftrightarrow \nu^{+}(F)=\nu^{-}(F)=0 \text { for all } F \subset E \\
& \Longleftrightarrow \nu^{+}(E)=\nu^{-}(E)=0 \\
& \Longleftrightarrow|\nu|(E)=0 . \tag{2}
\end{align*}
$$

Also,

$$
\begin{aligned}
\nu \perp \mu & \Longleftrightarrow \text { there exists a } \mu \text {-null } F \text { with } F^{c} \nu \text {-null (i.e. } \nu \text { supported on } F \text {) } \\
& \Longleftrightarrow\left({ }^{*}\right) \text { there exists a } \mu \text {-null } F \text { with } F^{c}|\nu| \text {-null }(|\nu| \text {-null same as } \nu \text {-null, by (??)) } \\
& \Longleftrightarrow|\nu| \perp \mu,
\end{aligned}
$$

while
$(*) \Longleftrightarrow$ there exists a μ-null F with $F^{c} \nu^{+}$-null and ν^{-}-null \Longleftrightarrow there exist μ-null G, H with $G^{c} \nu^{+}$-null and $H^{c} \nu^{-}$-null (take $F=G \cup H$) $\Longleftrightarrow \nu^{+} \perp \mu$ and $\nu^{-} \perp \mu$.

Thus $\nu \perp \mu \Longleftrightarrow \nu^{+} \perp \mu$ and $\nu^{-} \perp \mu$.
(4) Suppose $\nu=\lambda-\mu$ with λ, μ positive. Let $X=P \cup N$ be the Hahn decomposition of ν.

For $E \subset P$ we have

$$
\nu^{+}(E)=\nu(E)=\lambda(E)-\mu(E) \leq \lambda(E)
$$

so for general $F \subset X$, taking $E=F \cap P$,

$$
\nu^{+}(F)=\nu^{+}(F \cap P) \leq \lambda(F \cap P) \leq \lambda(F) .
$$

Similarly for $E \subset N$,

$$
\nu^{-}(E)=-\nu(E)=\mu(E)-\lambda(E) \leq \mu(E)
$$

so for general $F \subset X$, taking $E=F \cap N$,

$$
\nu^{-}(F)=\nu^{-}(F \cap N) \leq \mu(F \cap N) \leq \mu(F) .
$$

Thus $\nu^{+} \leq \lambda, \nu^{-} \leq \mu$.
(A) Let $0<M<\infty$. By Fubini-Tonelli we have

$$
\int_{[-M, M]} f d m=\int_{\mathbb{R}} \int_{[-M, M]} \frac{1}{|x-y|^{1 / 2}} d m(x) d \mu(y)
$$

Let

$$
g(y)=\int_{-M}^{M} \frac{1}{|x-y|^{1 / 2}} d x
$$

For $y \in[-M, M]$ we have

$$
\begin{aligned}
g(y) & =\int_{-M}^{y} \frac{1}{(y-x)^{1 / 2}} d x+\int_{y}^{M} \frac{1}{(x-y)^{1 / 2}} d x \\
& =2(y+M)^{1 / 2}+2(M-y)^{1 / 2} \\
& \leq 4(2 M)^{1 / 2}
\end{aligned}
$$

For $y>M$ the integrand in the definition of g is decreasing in y. Hence g is decreasing, so $g(y) \leq g(M) \leq(2 M)^{1 / 2}$. Similarly, for $y<-M$ we have $g(y) \leq g(-M) \leq(2 M)^{1 / 2}$. Thus g is a bounded measurable function on \mathbb{R}, so it is μ-integrable. Therefore

$$
\int_{[-M, M]} f d m=\int_{\mathbb{R}} g d \mu<\infty
$$

so f is finite m-a.e.
(B) Let $\tilde{X}=\{x \in X: f(x)>0\}$ and let $\tilde{\mu}$ be the restriction of μ to measurable subsets of \tilde{X}. Then by the assumptions in the problem, $\tilde{\mu}$ is a σ-finite measure.. The results of the problem are unchanged if we replace X, μ with $\tilde{X}, \tilde{\mu}$ so we may assume μ is σ-finite.

Using Fubini-Tonelli we have

$$
\begin{aligned}
\int_{X} f d \mu & =\int_{X} \int_{(0, f(x))} m(d t) \mu(d x) \\
& =\int_{X} \int_{(0, \infty)} \chi_{\{0<t<f(x)\}} m(d t) \mu(d x) \\
& =\int_{(0, \infty)} \int_{X} \chi_{\{0<t<f(x)\}} \mu(d x) m(d t) \\
& =\int_{(0, \infty)} \mu\left(E_{t}\right) m(d t)
\end{aligned}
$$

Since $\mu\left(E_{t}\right)<\infty$ for all $t>0$, we can apply continuity from above to conclude $g(t) \rightarrow 0$ as $t \rightarrow \infty$. Therefore using Fubini-Tonelli again,

$$
\begin{aligned}
\int_{(0, \infty)} t \lambda_{g}(d t) & =\int_{(0, \infty)} \int_{(0, t)} m(d x) \lambda_{g}(d t) \\
& =\int_{(0, \infty)} \int_{(0, \infty)} \chi_{\{x \leq t\}} m(d x) \lambda_{g}(d t) \\
& =\int_{(0, \infty)} \lambda_{g}((x, \infty)) m(d x) \\
& =\int_{(0, \infty)}-g(x) m(d x) \\
& =\int_{(0, \infty)} \mu\left(E_{x}\right) m(d x)
\end{aligned}
$$

(C) Let $X=P \cup N$ be the Hanh decomposition of ν. We have

$$
\int f d \nu=\int f^{+} d \nu^{+}-\int f^{-} d \nu^{+}-\int f^{+} d \nu^{-}+\int f^{-} d \nu^{-}
$$

These four integrals are all nonnegative, and by assumption at most one is infinite. Hence $\left|\int f d \nu\right| \leq \int f^{+} d \nu^{+}+\int f^{-} d \nu^{+}+\int f^{+} d \nu^{-}+\int f^{-} d \nu^{-}=\int|f| d \nu^{+}+\int|f| d \nu^{-}=\int|f| d|\nu|$.
(D) Let $X=P \cup N$ be the Hanh decomposition of ν. Suppose $|f| \leq 1$. Then by the above problem (C),

$$
\left|\int_{A} f d \nu\right|=\left|\int f \chi_{A} d \nu\right| \leq \int|f| \chi_{A} d|\nu| \leq \int \chi_{A} d|\nu|=|\nu|(A)
$$

Therefore $\sup \left\{\left|\int_{A} f d \nu\right|:|f| \leq 1\right\} \leq|\nu|(A)$. In the other direction, given A let $f=\chi_{A \cap P}-$ $\chi_{A \cap N}$. Then $|f| \leq 1$ and

$$
\int_{A} f d \nu=\int_{A \cap P} f d \nu+\int_{A \cap N} f d \nu=\nu(A \cap P)-\nu(A \cap N)=|\nu|(A) .
$$

Therefore $\sup \left\{\left|\int_{A} f d \nu\right|:|f| \leq 1\right\} \geq|\nu|(A)$, meaning we have equality.
(E) Applying Theorem 2.37(a) to $f=\chi_{E}$ we get

$$
\int \nu\left(E_{x}\right) d \mu(x)=\int \mu\left(E^{y}\right) d \nu(y)=0
$$

and therefore $\nu\left(E_{x}\right)=0$ for μ-a.e. x.

