MATH 525a ASSIGNMENT 7 SOLUTIONS
FALL 2016
Prof. Alexander

Chapter 2

(46) For fixed y, xp(x,y) = 1 only for one z, so [ xp(z,y) u(dz) = 0. Hence [ [ xp du dv =
0.

For fixed z, xp(z,y) = 1 for exactly one y, so [ xp(x,y) v(dy) = 1. Hence [ [ xp dvdu =
1.

Now

(%) (u x v)(D) = (u x v)*(D) = inf {Z(u xv)(E;): D C UjE;, E; € A for all A} ;

where A is the algebra {all finite unions of disjoint rectangles}. In fact the inf doesn’t
change if we restrict each E; to be just one rectangle. But for every rectangle E; = A; x B,
with card(E; N D) > 1, A; and B; must be intervals of positive length so (u x v)(E;) =
p(A;)v(B;) = pu(Aj) - 0o = oo. Since D is uncountable, a least one E; must have card(E; N
D) >1,s0 (ux v)(E;) =oc0. Thus [ xp d(uxv) = (p x v)(D) = oo, by (*).

(48) Since | f| > 0, by Tonelli’s Theorem (2.37a) we have

/]f| d(p x v) = //f(m,n) wu(dm) v(dn) = /2 v(dn) = 2v(N) = occ.
But [ f(m,n) p(dm) =1+ (=1)=0for all n, so [ [ f du dv =0, while

iftm=1,

1
[ omm) vidn) = {H CD—0 itma =X

so [ [fdvdu=[xpydu=1.

(51)(a) Let hi(z,y) = f(x), ho(x,y) = g(y). For E € Bc we have hi '(E) = f~Y(E) x C €
M x N, hy (E) = C x g7(E) € M x N. Thus hy, hy are M x N -measurable. Hence by
Proposition 2.6, so is h = hyhs.

(b) Let X = {z € X : f(z) #0},Y = {y € Y : g(y) # 0}. The the restrictions to X and
Y are o-finite, since f,g € L'. Tt is enough to consider f, g as functions on X,Y, so we may



assume X, Y are o-finite. Then by Tonelli’'s Theorem (2.37a),

[ av= [ [ 1@l ni@via)
= [ttt ( [ 11.dn) viaw
= (/Ifl du) (/!g! dV)
< X0

so h € L'(u x v). Therefore we can repeat (?7) without absolute values, which shows

[raieor=(fran)(faa).

(2) Let X = PUN be the Hahn decomposition. Then

(1)

Chapter 3

Eisvnull < v(F)=0 forall (measurable) FF C E

<~ v(FNP)=v(FNN)=0 forall FCFE

— v (F)=v (F)=0 forall FCE

— v (E)=v (E)=0

= [V|(E) = 0. (2)

Also,

v 1 u <= there exists a p-null F' with F° v-null (i.e. v supported on F)
<= (*) there exists a g-null F' with F° |[v|-null (Jv|-null same as v-null, by (7?))
— |v| L p,

while

(¥) <= there exists a p-null F with F¢ v"-null and v~ -null
<= there exist p-null G, H with G° v"-null and H° v~ -null (take F' = GU H)
< vt Lpandv™ L p.

Thusv L p <= v L pand v~ L pu.

(4) Suppose v = A — p with A, u positive. Let X = P U N be the Hahn decomposition of v.
For E C P we have



so for general F' C X, taking £ = F NP,
vi(F)=vT(FNP)<ANFNP)<\F).

Similarly for ¥ C N,
v~ (E) = —u(E) = u(E) — \(E) < pu(E)

so for general F' C X, taking £ = F NN,
v (F)=v (FNN)<u(FNN)<u(F).
Thus vt <\, v~ < .

(A) Let 0 < M < oo. By Fubini-Tonelli we have

1
fdm:// —— dm(x) du(y).
/[—M,M] R J[—M,M] |z — y[1/? (=) duly)

9(y) :/_M; d.

w o=yl

Let

For y € [-M, M] we have

For y > M the integrand in the definition of g is decreasing in y. Hence g is decreasing, so
g(y) < g(M) < (2M)Y2. Similarly, for y < —M we have g(y) < g(—M) < (2M)'/2. Thus g
is a bounded measurable function on R, so it is p-integrable. Therefore

/ fdm = /g dp < oo,
[— M, M] R

so f is finite m-a.e.

(B) Let X = {z € X : f(x) > 0} and let fi be the restriction of x to measurable subsets
of X. Then by the assumptions in the problem, fi is a o-finite measure.. The results of the
problem are unchanged if we replace X, u with X, i so we may assume p is o-finite.



Using Fubini-Tonelli we have

[ [, s
-/ /Ow Xio<tsoy m(dt) u(de)
/0 - | Xoson ntdz) mid)

= [ ) mian

Since u(E;) < oo for all ¢ > 0, we can apply continuity from above to conclude ¢(t) — 0 as
t — 00. Therefore using Fubini-Tonelli again,

/(Oyoo)mg(dt)— /OOO /Ot) m(dz) Ag(dt)

/OOO /OOO X{z<ty m(dz) Ag(dt)
B /(O,oo) Ag((x,00)) m(dx)

- /(0700) —g(x) m(dz)
- /(Om) u(E,) m(dr).

(C) Let X = PU N be the Hanh decomposition of v. We have

/fdy—/f+dy+—/fdy+—/f+du+/fdz/.

These four integrals are all nonnegative, and by assumption at most one is infinite. Hence
'/f dv| < /f+dy++/fdl/++/f+dy—|—/fdy :/\f\dy+—|—/\f\dl/ :/|f|d|1/\

(D) Let X = PU N be the Hanh decomposition of v. Suppose |f| < 1. Then by the above

problem (C),
fdvl = d
/4 Y ’/ fxa dv

< / Flxa ] < /XA dv] = [v|(A).
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Therefore sup {UA / dV| Cf] < 1} < |v|(A). In the other direction, given A let f = xanp —
Xann- Then |[f| <1 and

/fduz fdv+ fdv=v(ANP)—v(ANN)=|v|(A).
A AnP ANN

Therefore Sup{’fA f du‘ S f] < 1} > |v|(A), meaning we have equality.

(E) Applying Theorem 2.37(a) to f = xg we get

[ B duta) = [ uiEn) v =0,

and therefore v(E,) = 0 for p-a.e. x.



