MATH 525a ASSIGNMENT 7

FALL 2016
Prof. Alexander
Due Wednesday November 2.

Chapter 2 \#46, 48, 51
Chapter $3 \# 2,4$ and
(A) Let μ be a finite Borel measure on \mathbb{R} and let

$$
f(x)=\int_{\mathbb{R}} \frac{d \mu(y)}{|x-y|^{1 / 2}}
$$

Here $\frac{1}{|x-y|^{1 / 2}}$ should be interpreted as $+\infty$ when $x=y$. Prove that f is finite a.e. with respect to Lebesgue measure on \mathbb{R}.
(B) Let f be a nonnegative measurable function on (X, \mathcal{M}, μ) with $\mu(\{x: f(x)>t\}<\infty$ for all $t>0$. Let $E_{t}=\{x: f(x)>t\}$ and $g(t)=-\mu\left(E_{t}\right)$. Let λ_{g} be the Lebesgue-Stieltjes measure induced by g, that is, the measure satisfying

$$
\lambda_{g}((a, b])=g(b)-g(a) \quad \text { for all } 0<a<b .
$$

Let m denote Lebesgue measure. Show that

$$
\int f d \mu=\int_{(0, \infty)} \mu\left(E_{t}\right) m(d t)=\int_{(0, \infty)} t \lambda_{g}(d t)
$$

(C) For a signed measure ν, define $\int f d \nu=\int f d \nu^{+}-\int f d \nu^{-}$, whenever the integrals on the right both exist and are not both infinite. Show that $\left|\int f d \nu\right| \leq \int|f| d|\nu|$.
(D) For a signed measure ν, show that

$$
|\nu|(A)=\sup \left\{\left|\int_{A} f d \nu\right|:|f| \leq 1\right\}
$$

(E) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ-finite measure spaces and $E \in \mathcal{M} \otimes \mathcal{N}$, with sections E_{x} and E^{y}. Suppose $\mu\left(E^{y}\right)=0$ for ν-almost every y. Show that $\nu\left(E_{x}\right)=0$ for μ-almost every x.

HINTS:

(46) To compute $(\mu \times \nu)(D)$, use the fact that $(\mu \times \nu)(D)=(\mu \times \nu)^{*}(D)$.
(51)(a) Use Prop. 2.6.
(b) One approach is to approximate by simple functions.
(4) To get $\lambda \geq \nu^{+}$, first prove it for subsets of P, where $X=P \cup N$ is the Hanh decomposition for ν.
(A) How can you turn this into an application of the Fubini-Tonelli Theorem? Also, consider $[-M, M]$ in place of \mathbb{R}.
(B) For the first equality, use $a=\int_{(0, a)} m(d x)$ for appropriate $a \geq 0$, and then use FubiniTonelli. For the second equality, use this same idea differently.

