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(33) By definition of lim inf, there is a subsequence {fnk
} for which

∫
fnk
→ lim inf

∫
fn.

Since fnk
→ f in measure, there exists a further subsequence {fmj

} of {fnk
} for which

fmj
→ f a.e. By Fatou’s Lemma,∫

f =

∫
lim inf

j
fmj
≤ lim inf

j

∫
fmj

= lim inf
n

∫
fn.

(34)(a) We claim that every subsequence of {
∫
fn} has a further subsequence converging to∫

f . (It is a basic real-analysis fact about sequences of real numbers that this implies that
the full sequence

∫
fn →

∫
f .) To prove the claim, let {nk} be a subsequence. Since fnk

→ f
in measure, by Theorem 2.30 there exists a further subsequence {fmj

} of {fnk
} for which

fmj
→ f a.e. By Dominated Convergence,

∫
fmj
→
∫
f , proving the claim.

(b) There exists a subsequence fnk
→ f a.e. Since |fnk

| ≤ g, it follows that |f | ≤ g.
Therefore |fn − f | ≤ |fn|+ |f | ≤ 2g.

Now let {fnk
} be any subsequence. There exists a further subsequence fmj

→ f a.e., that
is, |fmj

− f | → 0 a.e. By Dominated Convergence,
∫
|fmj
− f | → 0. Thus every subsequence

of {
∫
|fn−f |} has a further subsequence converging to 0. As in (a) this implies

∫
|fn−f | → 0.

(35) By definition of convergence in measure, if fn → f in measure then for every ε > 0 and
δ > 0 there exists N such that n ≥ N implies µ({x : |fn(x)− f(x)| > ε}) < δ. In particular
we can take δ = ε.

Conversely suppose the above is valid in the case ε = δ. Let ε, δ > 0 (not necessarily
equal) and let u = min(δ, ε). Then there exists N such that n ≥ N implies

µ({x : |fn(x)− f(x)| > ε}) ≤ µ({x : |fn(x)− f(x)| > u} < u ≤ δ.

Here the first inequality follows from ε ≥ u. This shows that fn → f in measure.

(37)(a) Let N = {x : fn(x) 6→ f(x)}, so N is null. If x /∈ N then φ(fn(x))→ φ(f(x)). Thus
φ ◦ fn → φ ◦ f a.e.

(b) Suppose fn → f uniformly. Given ε > 0, there exists δ > 0 such that

|w − z| < δ implies |φ(w)− φ(z)| < ε. (∗)

Also, there exists N such that n ≥ N implies |fn(x)− f(x)| < δ for all x. Therefore n ≥ N
implies |φ(fn(x))− φ(f(x))| < ε for all x, which means φ ◦ fn → φ ◦ f uniformly.

Next suppose fn → f almost uniformly. Let ε > 0, and let E ⊂ X with µ(E) < ε such
that fn → f uniformly on Ec. By the above, φ ◦ fn → φ ◦ f uniformly on Ec, so (since ε is
arbitrary) φ ◦ fn → φ ◦ f almost uniformly.
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Finally suppose fn → f in measure. Let ε > 0, then let δ be as in (∗) above. Then

µ({x : |φ(fn(x))− φ(f(x))| ≥ ε}) ≤ µ({x : |fn(x)− f(x)| > δ})→ 0 as n→∞,

so φ ◦ fn → φ ◦ f in measure.
(c) Let φ = χ[0,∞), fn = −1/n, f = 0 (i.e. fn, f are constant functions.) Then φ ◦ fn =

0, φ ◦ f = 1 so fn → f in all 3 senses, but φ ◦ fn → φ ◦ f in none of the 3 senses.

(38)(a) This follows from

µ
(
{x : |(fn + gn)(x)− (f + g)(x)| > ε}

)
≤ µ

(
{x : |(fn(x)− f(x)| > ε/2}

)
+ µ
(
{x : |(gn(x)− g(x)| > ε/2}

)
→ 0 as n→∞.

(b) Suppose µ(X) < ∞. By problem (I), there exists M such that µ({x : |fn(x)| >
M}) < ε for all n and µ({x : |g(x)| > M}) < ε. Now |fngn− fg| ≤ |fn(gn− g)|+ |(fn− f)g|,
so

µ({x : |(fngn)(x)− (fg)(x)| > ε})

≤ µ({x : |fn(x)| > M}) + µ({x : |gn(x)− g(x)| > ε

2M
})

+ µ({x : |fn(x)− f(x)| > ε

2M
}) + µ({x : |g(x)| > M})

< ε+ ε+ ε+ ε,

if n is large enough. Since ε is arbitrary, as in problem (35) this shows fngn → fg in measure.
For a counterexample with µ(X) = ∞, take X = R, µ = m = Lebesgue, and f = g

unbounded, say f(x) = g(x) = x2 on R. Let fn = gn = f + 1/n. Then for x ∈ [n,∞) we
have |fn(x)gn(x) − f(x)g(x)| ≥ 2x2/n ≥ 2n, so m({x : |fn(x)gn(x) − f(x)g(x)| ≥ 1}) ≥
m([n,∞)) 6→ 0 as n→∞. Thus fngn 6→ fg in measure.

(42) Suppose fn → f uniformly. Let ε > 0. Then {x : |fn(x) − f(x)| > ε} = φ for n large
enough, so µ({x : |fn(x)− f(x)| > ε})→ 0 as n→∞. Thus fn → f in measure. (Note we
do not need the fact that µ is counting measure for this part.)

Conversely suppose fn → f in measure. Let ε > 0. Then µ({x : |fn(x)−f(x)| > ε})→ 0,
so µ({x : |fn(x) − f(x)| > ε}) < 1/2 for n large enough. But since µ in counting measure,
the only set of measure less than 1/2 is φ. Therefore for n large enough, |fn(x)− f(x)| < ε
for all x. This means fn → f uniformly.

(I)(a) Considering only integers M ≥ 1, since f is real-valued we have ∩M≥1{x : |f(x)| >
M} = φ. Since µ(X) <∞ we can use continuity from above to conclude that limM→∞ µ({x :
|f(x)| > M}) = 0, so there exists M with µ({x : |f(x)| > M}) < ε.

(b) Let ε > 0. From (a), there exists M0 such that µ({x : |f(x)| > M0 − 1}) < ε. By
convergence in measure, there exists n0 such that for n ≥ n0 we have µ({x : |fn(x)−f(x)| >
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1}) < ε, and hence also

µ({x : |fn(x)| > M0}) ≤ µ({x : |f(x)| > M0 − 1}) + µ({x : |fn(x)− f(x)| > 1}) < 2ε.

By (a) again, for each 1 ≤ n < n0 there exists Mn such that µ({x : |fn(x)| > Mn}) < ε.
Letting M = max(M0,M1, ..,Mn0−1) we then have µ({x : |fn(x)| > M}) < 2ε for all n ≥ 1.
Since ε is arbitrary this completes the proof.

(II) Let f ∈ L1(m), let ε > 0, let M = supx |g(x)| and let g =
∫ 1

0
g(x) dx. By Theorem 2.26,

there exists a step function ϕ =
∑k

j=1 cjχ(aj ,bj) for which
∫
|f −ϕ| dm < ε. For each j there

is an open interval Ij ⊂ (aj, bj) with endpoints that are multiples of 1/n, and with these
endpoints being within distance 1/n of aj and bj respectively. We have

∫
Ij

(g(nx)−g) dx = 0,

since the integral over each period of length 1/n is 0, so∣∣∣∣∫
R
χ(aj ,bj)(x)(g(nx)− g) dx

∣∣∣∣ =

∣∣∣∣∣
∫
(aj ,bj)\Ij

(g(nx)− g) dx

∣∣∣∣∣
≤ 2Mµ((aj, bj)\Ij)

≤ 4M

n
→ 0 as n→∞.

Therefore also
∫
R ϕ(x)(g(nx)− g) dx→ 0, so for large n,∣∣∣∣∫

R
f(x)(g(nx)− g) dx

∣∣∣∣ ≤ ∣∣∣∣∫
R
(f(x)− ϕ(x))(g(nx)− g) dx

∣∣∣∣+

∣∣∣∣∫
R
ϕ(x)(g(nx)− g) dx

∣∣∣∣
≤ 2M

∫
R
|f(x)− ϕ(x)| dx+

∣∣∣∣∫
R
ϕ(x)(g(nx)− g) dx

∣∣∣∣
< 2Mε+ ε.

Since ε is arbitrary, this shows
∫
R f(x)(g(nx)− g) dx→ 0, which is equivalent to the desired

result.

(III) Let fn(x) = 1+nx2

(1+x2)n
. Since (1 + x2)n ≥ 1 + nx2 +

(
n
2

)
x4, we have |fn(x)| ≤ 1 for all

x ∈ [0, 1]. Also, for x > 0, since
(
n
2

)
is of order n2, dividing numerator and denominator by

n2 shows that

0 ≤ fn(x) ≤ 1 + nx2

1 + nx2 +
(
n
2

)
x4
→ 0 as n→∞.

Hence by Dominated Convergence, the desired limit is 0.

(IV)(a) Since f is not assumed to be in L1, for k ≥ 1 we need to define a truncated version
fk = fχ{|f |≤k}. Let Fk = {x : |f(x)| > k} be the set where f and fk differ. Since fk ∈ L1, and
continuous functions are dense in L1, by Theorem 2.26 there exists a sequence of continuous
functions which converges in L1 to fk. By Proposition 2.29, this sequence also converges
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in measure, and by Theorem 2.30 it has a subsequence which converges a.e. to fk. By
Egoroff’s Theorem, this subsequence converges almost uniformly. Thus for each k, fk is an
almost-uniform limit of continuous functions. This means that given k ≥ 1 and ε, δ > 0 we
can find a continuous function g on [a, b] and a set E ⊂ [a, b] with m(E) < ε, such that

sup{|fk(x)− g(x)| : x ∈ [a, b]\E} < δ,

and therefore, since f = fk on F c
k ,

sup{|f(x)− g(x)| : x ∈ [a, b]\(E ∪ Fk)} < δ.

Now since Fk ↘ φ, for each n ≥ 1 we can find a kn such m(Fkn) < 1/2n. Applying the
above with δ = 1/n and ε = 1/2n, we see that for each n there exist a continuous function
gn and a set En such that m(En) < 1/2n and

sup{|f(x)− gn(x)| : x ∈ [a, b]\(En ∪ Fkn)} < 1

n
.

For j ≥ 1 let Ẽj = ∪n≥j(En ∪ Fkn); then m(Ẽj) ≤
∑

n≥j 2/2n < 1/2j−2 and

sup{|f(x)− gn(x)| : x ∈ [a, b]\Ẽj} <
1

n
for all n ≥ j,

which means that gn → f uniformly on [a, b]\Ẽj. Since m(Ẽj) < 1/2j−2 and j is arbitrary,
this says that gn → f almost uniformly.

(b) By (a), there exist continuous functions gn on [a, b] such that gn → f almost uni-
formly. Let ε > 0; then there exists Ê ⊂ [a, b] with m(Êc) < ε/2 and gn → f uniformly on
Ê. Since Lebesgue measure is regular, there exists a compact E ⊂ Ê with m(Ê\E) < ε/2,
so m(Ec) ≤ m(Êc) + m(Ê\E) < ε. Since each gn|E is continuous and the convergence is
uniform on E, f |E is also continuous.
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