MATH 525a ASSIGNMENT 6 SOLUTIONS

FALL 2016
Prof. Alexander

Chapter 2

(33) By definition of \lim inf, there is a subsequence $\left\{f_{n_{k}}\right\}$ for which $\int f_{n_{k}} \rightarrow \liminf \int f_{n}$. Since $f_{n_{k}} \rightarrow f$ in measure, there exists a further subsequence $\left\{f_{m_{j}}\right\}$ of $\left\{f_{n_{k}}\right\}$ for which $f_{m_{j}} \rightarrow f$ a.e. By Fatou's Lemma,

$$
\int f=\int \liminf _{j} f_{m_{j}} \leq \liminf _{j} \int f_{m_{j}}=\liminf _{n} \int f_{n}
$$

(34)(a) We claim that every subsequence of $\left\{\int f_{n}\right\}$ has a further subsequence converging to $\int f$. (It is a basic real-analysis fact about sequences of real numbers that this implies that the full sequence $\int f_{n} \rightarrow \int f$.) To prove the claim, let $\left\{n_{k}\right\}$ be a subsequence. Since $f_{n_{k}} \rightarrow f$ in measure, by Theorem 2.30 there exists a further subsequence $\left\{f_{m_{j}}\right\}$ of $\left\{f_{n_{k}}\right\}$ for which $f_{m_{j}} \rightarrow f$ a.e. By Dominated Convergence, $\int f_{m_{j}} \rightarrow \int f$, proving the claim.
(b) There exists a subsequence $f_{n_{k}} \rightarrow f$ a.e. Since $\left|f_{n_{k}}\right| \leq g$, it follows that $|f| \leq g$. Therefore $\left|f_{n}-f\right| \leq\left|f_{n}\right|+|f| \leq 2 g$.

Now let $\left\{f_{n_{k}}\right\}$ be any subsequence. There exists a further subsequence $f_{m_{j}} \rightarrow f$ a.e., that is, $\left|f_{m_{j}}-f\right| \rightarrow 0$ a.e. By Dominated Convergence, $\int\left|f_{m_{j}}-f\right| \rightarrow 0$. Thus every subsequence of $\left\{\int\left|f_{n}-f\right|\right\}$ has a further subsequence converging to 0 . As in (a) this implies $\int\left|f_{n}-f\right| \rightarrow 0$.
(35) By definition of convergence in measure, if $f_{n} \rightarrow f$ in measure then for every $\epsilon>0$ and $\delta>0$ there exists N such that $n \geq N$ implies $\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right)<\delta$. In particular we can take $\delta=\epsilon$.

Conversely suppose the above is valid in the case $\epsilon=\delta$. Let $\epsilon, \delta>0$ (not necessarily equal) and let $u=\min (\delta, \epsilon)$. Then there exists N such that $n \geq N$ implies

$$
\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right) \leq \mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>u\right\}<u \leq \delta\right.
$$

Here the first inequality follows from $\epsilon \geq u$. This shows that $f_{n} \rightarrow f$ in measure.
(37)(a) Let $N=\left\{x: f_{n}(x) \nrightarrow f(x)\right\}$, so N is null. If $x \notin N$ then $\phi\left(f_{n}(x)\right) \rightarrow \phi(f(x))$. Thus $\phi \circ f_{n} \rightarrow \phi \circ f$ a.e.
(b) Suppose $f_{n} \rightarrow f$ uniformly. Given $\epsilon>0$, there exists $\delta>0$ such that

$$
\begin{equation*}
|w-z|<\delta \quad \text { implies } \quad|\phi(w)-\phi(z)|<\epsilon \tag{*}
\end{equation*}
$$

Also, there exists N such that $n \geq N$ implies $\left|f_{n}(x)-f(x)\right|<\delta$ for all x. Therefore $n \geq N$ implies $\left|\phi\left(f_{n}(x)\right)-\phi(f(x))\right|<\epsilon$ for all x, which means $\phi \circ f_{n} \rightarrow \phi \circ f$ uniformly.

Next suppose $f_{n} \rightarrow f$ almost uniformly. Let $\epsilon>0$, and let $E \subset X$ with $\mu(E)<\epsilon$ such that $f_{n} \rightarrow f$ uniformly on E^{c}. By the above, $\phi \circ f_{n} \rightarrow \phi \circ f$ uniformly on E^{c}, so (since ϵ is arbitrary) $\phi \circ f_{n} \rightarrow \phi \circ f$ almost uniformly.

Finally suppose $f_{n} \rightarrow f$ in measure. Let $\epsilon>0$, then let δ be as in $(*)$ above. Then

$$
\mu\left(\left\{x:\left|\phi\left(f_{n}(x)\right)-\phi(f(x))\right| \geq \epsilon\right\}\right) \leq \mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\delta\right\}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

so $\phi \circ f_{n} \rightarrow \phi \circ f$ in measure.
(c) Let $\phi=\chi_{[0, \infty)}, f_{n}=-1 / n, f=0$ (i.e. f_{n}, f are constant functions.) Then $\phi \circ f_{n}=$ $0, \phi \circ f=1$ so $f_{n} \rightarrow f$ in all 3 senses, but $\phi \circ f_{n} \rightarrow \phi \circ f$ in none of the 3 senses.
(38)(a) This follows from

$$
\begin{aligned}
& \mu\left(\left\{x:\left|\left(f_{n}+g_{n}\right)(x)-(f+g)(x)\right|>\epsilon\right\}\right) \\
& \quad \leq \mu\left(\left\{x: \mid\left(f_{n}(x)-f(x) \mid>\epsilon / 2\right\}\right)+\mu\left(\left\{x: \mid\left(g_{n}(x)-g(x) \mid>\epsilon / 2\right\}\right) \rightarrow 0 \text { as } n \rightarrow \infty\right.\right.
\end{aligned}
$$

(b) Suppose $\mu(X)<\infty$. By problem (I), there exists M such that $\mu\left(\left\{x:\left|f_{n}(x)\right|>\right.\right.$ $M\})<\epsilon$ for all n and $\mu(\{x:|g(x)|>M\})<\epsilon$. Now $\left|f_{n} g_{n}-f g\right| \leq\left|f_{n}\left(g_{n}-g\right)\right|+\left|\left(f_{n}-f\right) g\right|$, so

$$
\begin{aligned}
& \mu\left(\left\{x:\left|\left(f_{n} g_{n}\right)(x)-(f g)(x)\right|>\epsilon\right\}\right) \\
& \quad \leq \mu\left(\left\{x:\left|f_{n}(x)\right|>M\right\}\right)+\mu\left(\left\{x:\left|g_{n}(x)-g(x)\right|>\frac{\epsilon}{2 M}\right\}\right) \\
& \quad+\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\frac{\epsilon}{2 M}\right\}\right)+\mu(\{x:|g(x)|>M\}) \\
& \quad<\epsilon+\epsilon+\epsilon+\epsilon
\end{aligned}
$$

if n is large enough. Since ϵ is arbitrary, as in problem (35) this shows $f_{n} g_{n} \rightarrow f g$ in measure.
For a counterexample with $\mu(X)=\infty$, take $X=\mathbb{R}, \mu=m=$ Lebesgue, and $f=g$ unbounded, say $f(x)=g(x)=x^{2}$ on \mathbb{R}. Let $f_{n}=g_{n}=f+1 / n$. Then for $x \in[n, \infty)$ we have $\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| \geq 2 x^{2} / n \geq 2 n$, so $m\left(\left\{x:\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| \geq 1\right\}\right) \geq$ $m([n, \infty)) \nrightarrow 0$ as $n \rightarrow \infty$. Thus $f_{n} g_{n} \nrightarrow f g$ in measure.
(42) Suppose $f_{n} \rightarrow f$ uniformly. Let $\epsilon>0$. Then $\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}=\phi$ for n large enough, so $\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus $f_{n} \rightarrow f$ in measure. (Note we do not need the fact that μ is counting measure for this part.)

Conversely suppose $f_{n} \rightarrow f$ in measure. Let $\epsilon>0$. Then $\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right) \rightarrow 0$, so $\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right)<1 / 2$ for n large enough. But since μ in counting measure, the only set of measure less than $1 / 2$ is ϕ. Therefore for n large enough, $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all x. This means $f_{n} \rightarrow f$ uniformly.
(I)(a) Considering only integers $M \geq 1$, since f is real-valued we have $\cap_{M \geq 1}\{x:|f(x)|>$ $M\}=\phi$. Since $\mu(X)<\infty$ we can use continuity from above to conclude that $\lim _{M \rightarrow \infty} \mu(\{x$: $|f(x)|>M\})=0$, so there exists M with $\mu(\{x:|f(x)|>M\})<\epsilon$.
(b) Let $\epsilon>0$. From (a), there exists M_{0} such that $\mu\left(\left\{x:|f(x)|>M_{0}-1\right\}\right)<\epsilon$. By convergence in measure, there exists n_{0} such that for $n \geq n_{0}$ we have $\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\right.\right.$

1\}) $<\epsilon$, and hence also

$$
\mu\left(\left\{x:\left|f_{n}(x)\right|>M_{0}\right\}\right) \leq \mu\left(\left\{x:|f(x)|>M_{0}-1\right\}\right)+\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>1\right\}\right)<2 \epsilon
$$

By (a) again, for each $1 \leq n<n_{0}$ there exists M_{n} such that $\mu\left(\left\{x:\left|f_{n}(x)\right|>M_{n}\right\}\right)<\epsilon$. Letting $M=\max \left(M_{0}, M_{1}, . ., M_{n_{0}-1}\right)$ we then have $\mu\left(\left\{x:\left|f_{n}(x)\right|>M\right\}\right)<2 \epsilon$ for all $n \geq 1$. Since ϵ is arbitrary this completes the proof.
(II) Let $f \in L^{1}(m)$, let $\epsilon>0$, let $M=\sup _{x}|g(x)|$ and let $\bar{g}=\int_{0}^{1} g(x) d x$. By Theorem 2.26, there exists a step function $\varphi=\sum_{j=1}^{k} c_{j} \chi_{\left(a_{j}, b_{j}\right)}$ for which $\int|f-\varphi| d m<\epsilon$. For each j there is an open interval $I_{j} \subset\left(a_{j}, b_{j}\right)$ with endpoints that are multiples of $1 / n$, and with these endpoints being within distance $1 / n$ of a_{j} and b_{j} respectively. We have $\int_{I_{j}}(g(n x)-\bar{g}) d x=0$, since the integral over each period of length $1 / n$ is 0 , so

$$
\begin{aligned}
\left|\int_{\mathbb{R}} \chi_{\left(a_{j}, b_{j}\right)}(x)(g(n x)-\bar{g}) d x\right| & =\left|\int_{\left(a_{j}, b_{j}\right) \backslash I_{j}}(g(n x)-\bar{g}) d x\right| \\
& \leq 2 M \mu\left(\left(a_{j}, b_{j}\right) \backslash I_{j}\right) \\
& \leq \frac{4 M}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Therefore also $\int_{\mathbb{R}} \varphi(x)(g(n x)-\bar{g}) d x \rightarrow 0$, so for large n,

$$
\begin{aligned}
\left|\int_{\mathbb{R}} f(x)(g(n x)-\bar{g}) d x\right| & \leq\left|\int_{\mathbb{R}}(f(x)-\varphi(x))(g(n x)-\bar{g}) d x\right|+\left|\int_{\mathbb{R}} \varphi(x)(g(n x)-\bar{g}) d x\right| \\
& \leq 2 M \int_{\mathbb{R}}|f(x)-\varphi(x)| d x+\left|\int_{\mathbb{R}} \varphi(x)(g(n x)-\bar{g}) d x\right| \\
& <2 M \epsilon+\epsilon
\end{aligned}
$$

Since ϵ is arbitrary, this shows $\int_{\mathbb{R}} f(x)(g(n x)-\bar{g}) d x \rightarrow 0$, which is equivalent to the desired result.
(III) Let $f_{n}(x)=\frac{1+n x^{2}}{\left(1+x^{2}\right)^{n}}$. Since $\left(1+x^{2}\right)^{n} \geq 1+n x^{2}+\binom{n}{2} x^{4}$, we have $\left|f_{n}(x)\right| \leq 1$ for all $x \in[0,1]$. Also, for $x>0$, since $\binom{n}{2}$ is of order n^{2}, dividing numerator and denominator by n^{2} shows that

$$
0 \leq f_{n}(x) \leq \frac{1+n x^{2}}{1+n x^{2}+\binom{n}{2} x^{4}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Hence by Dominated Convergence, the desired limit is 0 .
(IV)(a) Since f is not assumed to be in L^{1}, for $k \geq 1$ we need to define a truncated version $f_{k}=f \chi_{\{|f| \leq k\}}$. Let $F_{k}=\{x:|f(x)|>k\}$ be the set where f and f_{k} differ. Since $f_{k} \in L^{1}$, and continuous functions are dense in L^{1}, by Theorem 2.26 there exists a sequence of continuous functions which converges in L^{1} to f_{k}. By Proposition 2.29, this sequence also converges
in measure, and by Theorem 2.30 it has a subsequence which converges a.e. to f_{k}. By Egoroff's Theorem, this subsequence converges almost uniformly. Thus for each k, f_{k} is an almost-uniform limit of continuous functions. This means that given $k \geq 1$ and $\epsilon, \delta>0$ we can find a continuous function g on $[a, b]$ and a set $E \subset[a, b]$ with $m(E)<\epsilon$, such that

$$
\sup \left\{\left|f_{k}(x)-g(x)\right|: x \in[a, b] \backslash E\right\}<\delta
$$

and therefore, since $f=f_{k}$ on F_{k}^{c},

$$
\sup \left\{|f(x)-g(x)|: x \in[a, b] \backslash\left(E \cup F_{k}\right)\right\}<\delta
$$

Now since $F_{k} \searrow \phi$, for each $n \geq 1$ we can find a k_{n} such $m\left(F_{k_{n}}\right)<1 / 2^{n}$. Applying the above with $\delta=1 / n$ and $\epsilon=1 / 2^{n}$, we see that for each n there exist a continuous function g_{n} and a set E_{n} such that $m\left(E_{n}\right)<1 / 2^{n}$ and

$$
\sup \left\{\left|f(x)-g_{n}(x)\right|: x \in[a, b] \backslash\left(E_{n} \cup F_{k_{n}}\right)\right\}<\frac{1}{n}
$$

For $j \geq 1$ let $\tilde{E}_{j}=\cup_{n \geq j}\left(E_{n} \cup F_{k_{n}}\right)$; then $m\left(\tilde{E}_{j}\right) \leq \sum_{n \geq j} 2 / 2^{n}<1 / 2^{j-2}$ and

$$
\sup \left\{\left|f(x)-g_{n}(x)\right|: x \in[a, b] \backslash \tilde{E}_{j}\right\}<\frac{1}{n} \quad \text { for all } n \geq j
$$

which means that $g_{n} \rightarrow f$ uniformly on $[a, b] \backslash \tilde{E}_{j}$. Since $m\left(\tilde{E}_{j}\right)<1 / 2^{j-2}$ and j is arbitrary, this says that $g_{n} \rightarrow f$ almost uniformly.
(b) By (a), there exist continuous functions g_{n} on $[a, b]$ such that $g_{n} \rightarrow f$ almost uniformly. Let $\epsilon>0$; then there exists $\hat{E} \subset[a, b]$ with $m\left(\hat{E}^{c}\right)<\epsilon / 2$ and $g_{n} \rightarrow f$ uniformly on \hat{E}. Since Lebesgue measure is regular, there exists a compact $E \subset \hat{E}$ with $m(\hat{E} \backslash E)<\epsilon / 2$, so $m\left(E^{c}\right) \leq m\left(\hat{E}^{c}\right)+m(\hat{E} \backslash E)<\epsilon$. Since each $\left.g_{n}\right|_{E}$ is continuous and the convergence is uniform on $E,\left.f\right|_{E}$ is also continuous.

