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Chapter 2

(33) By definition of lim inf, there is a subsequence {f,,} for which [ f,, — liminf [ f,.
Since fn, — [ in measure, there exists a further subsequence {f,} of {f.,} for which
Jm; — [ a.e. By Fatou’s Lemma,

/f = /lim‘inf Jm; < lim'inf/fmj = lim inf/fn.
J j n

(34)(a) We claim that every subsequence of { [ f,} has a further subsequence converging to
f f. (It is a basic real-analysis fact about sequences of real numbers that this implies that
the full sequence [ f,, = [ f.) To prove the claim, let {n;} be a subsequence. Since f,, — f
in measure, by Theorem 2.30 there exists a further subsequence {f,} of {f,,} for which
Jm; — [ a.e. By Dominated Convergence, i Jm; — | f, proving the claim.

(b) There exists a subsequence f,, — f a.e. Since |f,,| < g, it follows that |f| < g¢.
Therefore |f,, — f| < |ful + |f| < 2g.

Now let { f,, } be any subsequence. There exists a further subsequence f,,, — f a.e., that
is, | fm; — f| = 0 a.e. By Dominated Convergence, [ |fm, — f| = 0. Thus every subsequence
of { [ |fn—f|} has a further subsequence converging to 0. Asin (a) this implies [ |f,— f| — 0.

(35) By definition of convergence in measure, if f,, — f in measure then for every ¢ > 0 and
d > 0 there exists N such that n > N implies p({z : |f.(z) — f(z)| > €}) < d. In particular
we can take § = e.

Conversely suppose the above is valid in the case € = §. Let ¢,0 > 0 (not necessarily
equal) and let v = min(d, €). Then there exists N such that n > N implies

pl{ : [fule) = f(2)] > €}) < p({z: [ful2) = f(2)] > u} <u <6

Here the first inequality follows from € > u. This shows that f, — f in measure.

(37)(a) Let N ={x: fu(x) A f(x)}, so N is null. If = ¢ N then ¢(f,(z)) = ¢(f(x)). Thus

oo f,— oo f ae.
(b) Suppose f,, — f uniformly. Given € > 0, there exists 6 > 0 such that

|lw—2z| < implies |d(w)— @(2)| <e. ()

Also, there exists N such that n > N implies |f,(z) — f(z)| < ¢ for all z. Therefore n > N
implies |¢(fn(z)) — &(f(z))| < € for all z, which means ¢ o f,, — ¢ o f uniformly.

Next suppose f, — f almost uniformly. Let ¢ > 0, and let £ C X with u(FE) < € such
that f, — f uniformly on E¢. By the above, ¢ o f,, — ¢ o f uniformly on E°, so (since € is
arbitrary) ¢ o f,, = ¢ o f almost uniformly.



Finally suppose f, — f in measure. Let € > 0, then let 0 be as in (%) above. Then

p{z = [o(ful@)) = o(f(2)] = €}) < p({z : |fulz) = f(2)] > 0}) = 0 asn = oo,

so ¢ o f, = ¢ o f in measure.
(c) Let ¢ = X[0,00), fn = —1/n, f =0 (i.e. f,, f are constant functions.) Then ¢ o f, =
0,00 f=1so f, — fin all 3 senses, but ¢ o f,, — ¢ o f in none of the 3 senses.

(38)(a) This follows from

p({w 5 10+ 90) (@) = ( + 9) @) > ¢}
< p({e (@) = @) > ¢/2}) + u({o: (ga(@) = g(2)] > €/2}) = 0 as n— oo,

(b) Suppose pu(X) < oo. By problem (I), there exists M such that p({z : |f.(z)| >

M}) < eforall mand p({z : |g(z)| > M}) < e Now |frgn — f9] < |fulgn— )|+ |(fn— f)yl
SO

pl{e = [(fagn)(@) = (f9)(@)] > €})
< pl{w: [fal@) > MY) + p{z : |ga(e) = g(@)] > 57})

2M
+ul{z: | fulz) — f2)] >

)+ ul{z : |g(x)| > MY)
<ete+ete,

2M

if n is large enough. Since € is arbitrary, as in problem (35) this shows f, g, — fg in measure.
For a counterexample with p(X) = oo, take X = R, u = m = Lebesgue, and f = g¢
unbounded, say f(z) = g(z) = 2> on R. Let f, = g, = f + 1/n. Then for z € [n,c0) we

have |f(2)gn(z) — f(2)g(z)| = 22°/n > 2n, so m({z : |fu(2)gn(z) — f(2)9(x)| > 1}) >
m([n,00)) 4 0 as n — oco. Thus f,g, /4 fg in measure.

(42) Suppose f, — f uniformly. Let € > 0. Then {z : |f.(x) — f(x)| > €} = ¢ for n large
enough, so pu({z : |f.(xz) — f(z)| > €}) — 0 as n — oo. Thus f,, — f in measure. (Note we
do not need the fact that p is counting measure for this part.)

Conversely suppose f,, — f in measure. Let € > 0. Then u({z : |f.(x) — f(x)| > €}) = 0,
so p({z : |fulz) — f(x)] > €}) < 1/2 for n large enough. But since p in counting measure,
the only set of measure less than 1/2 is ¢. Therefore for n large enough, |f,(z) — f(x)| < €
for all z. This means f,, — f uniformly.

(I)(a) Considering only integers M > 1, since f is real-valued we have Ny>1{z : |f(z)| >
M} = ¢. Since u(X) < oo we can use continuity from above to conclude that limpy; o p({2 :
|f(z)] > M}) =0, so there exists M with pu({x : |f(x)] > M}) <e.

(b) Let € > 0. From (a), there exists My such that p({z : [f(z)| > My — 1}) < e. By
convergence in measure, there exists ng such that for n > ny we have u({x : |f.(z) — f(z)| >
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1}) < ¢, and hence also

p{z s | fulz)] > Mo}) < p{z : [f(z)| > Mo = 1}) + p({z : [fu(z) — f(2)] > 1}) < 2e.

By (a) again, for each 1 < n < ng there exists M, such that u({z : |f.(z)| > M,}) < e.
Letting M = max(My, M, .., M,,,—1) we then have p({x : [f.(x)] > M}) < 2¢ for all n > 1.
Since € is arbitrary this completes the proof.

(IT) Let f € L*(m), let € > 0, let M = sup, |g(x)| and let g = fol g(x) dx. By Theorem 2.26,

there exists a step function ¢ = Z?Zl CjX(a;,) for which [ |f — | dm < e. For each j there

is an open interval I; C (a;,b;) with endpoints that are multiples of 1/n, and with these

endpoints being within distance 1/n of a; and b; respectively. We have [, (g(nx)—g) dz = 0,
J

since the integral over each period of length 1/n is 0, so

|t -g) s
(a5,65)\1;

< 2Mpu((aj, b;)\I;)

4M
<——=0 asn— oc.
n

‘/Rx(%bj)(x)(g(nx) —g) dr

Therefore also [, ¢(x)(g9(nx) —g) dx — 0, so for large n,

/R f(@)(g(nz) —7) da +

<

/R (f(z) - p(@))(g(nz) — g) de

/R o(x)(g(nz) — 7) da

<oM / F(@) — p(@)] dz +
R
< 2Me + €.

/R o(2)(9(nz) — ) d

Since € is arbitrary, this shows [, f(x)(g9(nz) —g) dx — 0, which is equivalent to the desired
result.

(IT1) Let fo(z) = (}iggfn Since (14 2?)" > 1+ na? + (3)a*, we have |f,(z)| < 1 for all

x € [0,1]. Also, for z > 0, since (’g) is of order n?, dividing numerator and denominator by

n? shows that

1 2
0< fulz) < —I—nxn — 0 asn — oo.
1+nx2+(2)x4

Hence by Dominated Convergence, the desired limit is 0.

(IV)(a) Since f is not assumed to be in L', for k > 1 we need to define a truncated version
fe = Fxqp<ry- Let Fy = {z : |f(x)| > k} be the set where f and fy differ. Since f; € L', and
continuous functions are dense in L!, by Theorem 2.26 there exists a sequence of continuous
functions which converges in L! to f;. By Proposition 2.29, this sequence also converges
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in measure, and by Theorem 2.30 it has a subsequence which converges a.e. to fx.
Egoroft’s Theorem, this subsequence converges almost uniformly. Thus for each &, f is an
almost-uniform limit of continuous functions. This means that given £ > 1 and €,§ > 0 we
can find a continuous function g on [a,b] and a set E C [a, b] with m(E) < ¢, such that

sup{|fi(z) = g(2)] : = € [a, D\ E} <,

and therefore, since f = f; on Ff,

sup{|f(x) — g(z)| : € [a,b]\(F U F})} <.

Now since Fj, \, ¢, for each n > 1 we can find a k, such m(Fy, ) < 1/2". Applying the
above with § = 1/n and € = 1/2", we see that for each n there exist a continuous function
gn and a set E,, such that m(E,) < 1/2" and

Sup{1/(#) ~ gulo)] 7 € 0, (B, U B, )} < -

For j > 1 let EN]’ = Un2j<En U Fj, ); then m( ) < En>J 2/2" < 1/2] 2 and
~ 1
sup{|f(z) — gn(z)| : @ € [a, 0]\ E}} < - for all n > j,

which means that g, — f uniformly on [a, b]\E;. Since m(E;) < 1/2/-% and j is arbitrary,
this says that g, — f almost uniformly.

(b) By (a), there exist continuous functions g, on [a,b] such that g, — f almost uni-
formly. Let € > 0; then there exists E C [a,b] with m(E°) < ¢/2 and g, — f uniformly on
E. Since Lebesgue measure is regular, there exists a compact £ C E with m(E\E) < €/2,
so m(E¢) < m(E¢) + m(E\E) < e. Since each g,|g is continuous and the convergence is
uniform on F, f|g is also continuous.



