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Chapter 2

(20) We may assume all the functions are real-valued, otherwise consider real and imaginary
parts separately. Then gn + fn ≥ 0 and gn − fn ≥ 0, so by Fatou’s Lemma,∫

g + lim inf

∫
fn = lim

∫
gn + lim inf

∫
fn = lim inf

∫
(gn + fn) ≥

∫
(g + f),∫

g − lim sup

∫
fn = lim

∫
gn − lim sup

∫
fn = lim inf

∫
(gn − fn) ≥

∫
(g − f).

Subtracting
∫
g from both sides we get lim inf

∫
fn ≥

∫
f ≥ lim sup

∫
fn, so

∫
fn →

∫
f .

(21) If
∫
|fn − f | → 0 then∣∣∣∣∫ |fn| − ∫ |f |∣∣∣∣ ≤ ∫ ∣∣|fn| − |f |∣∣ ≤ ∫ |fn − f | → 0.

Conversely suppose
∫
|fn| →

∫
|f |. Let gn = |fn| + |f |, g = 2|f |, hn = |fn − f |, h = 0.

Then hn, gn, h, g ∈ L1, hn → h a.e., gn → g a.e., |hn| ≤ gn,
∫
gn →

∫
g, so by problem 20,∫

hn →
∫
h, that is,

∫
|fn − f | → 0.

(22) If f is a function on N, then
∫
f is well-defined provided the positive and negative terms

in the sum
∑∞

k=1 f(k) are not both infinite, and in this case,
∫
f dµ is equal to this sum.

Fatou’s Lemma says that if fn(k) ≥ 0 for all n, k, then

∞∑
k=1

lim inf
n

fn(k) ≥ lim inf
n

∞∑
k=1

fn(k).

Monotone Convergence says that if 0 ≤ fn(k)↗ f(k) for all k, then

∞∑
k=1

f(k) = lim
n

∞∑
k=1

fn(k).

Dominated Convergence says that if there exists a sequence g(k) ≥ 0 with
∑

k g(k) < ∞
and |fn(k)| ≤ g(k) for all n, k, then

∑∞
k=1 f(k) converges and

∞∑
k=1

f(k) = lim
n

∞∑
k=1

fn(k).

1



(25)(a) From calculus,
∫
f dm =

∫ 1

0
x−1/2 dx = 2x1/2|10 = 2. Let gk(x) =

∑k
n=1 2−nf(x− rn).

Since f is nonnegative, gk ↗ g, so by Monotone Convergence we have∫
g dm = lim

k

∫
gk dm = lim

k

k∑
n=1

2−n
∫
f(x− rn) m(dx) = 2 lim

k

k∑
n=1

2−n = 2 <∞,

so g <∞ a.e.
(b) Given a nonempty interval (a, b) there exists a rational rn ∈ (a, b). Then g(x) ≥

2−nf(x − rn) ↗ ∞ as x ↘ rn, so g is unbounded on every interval. This means g cannot
be continuous anywhere, since if it were continuous at some x it would be bounded in a
neighborhood of x. Even if g is modified on a null set N , for each rational rn there is a
sequence xk /∈ N with xk ↘ rn, so g(xk) → ∞ as above, so g is still unbounded on every
interval, and hence continuous nowhere.

(c) Since g < ∞ a.e., we have g2 < ∞ a.e. If (a, b) is an interval and rn is a rational in
(a, b), then for some ε > 0,∫

(a,b)

g2 dm ≥
∫ b

a

2−2nf 2(x− rn) dx ≥ 2−2n
∫ rn+ε

rn

f 2(x− rn) dx

= 2−2n
∫ ε

0

f 2(u) du = 2−2n
∫ ε

0

u−1 du =∞.

(I) Let tn ↘ 0. Then

F (tn)− F (0)

tn − 0
=

∫
(0,∞)

1

tn

(
1

x+ tn
− 1

x

)
µ(dx) = −

∫
(0,∞)

1

x(x+ tn)
µ(dx).

Let fn(x) = 1/(x(x+ tn)) and f(x) = 1/x2. Then 0 ≤ fn ↗ f so by Monotone Convergence,

lim
n

F (tn)− F (0)

tn − 0
= − lim

n

∫
(0,∞)

fn dµ = −
∫
(0,∞)

f dµ = −
∫
(0,∞)

1

x2
µ(dx),

so

FR(0) = −
∫
(0,∞)

1

x2
µ(dx).

(II) Let

f(x, u) =
xneux

ex + 1
.

Then
∂f

∂u
(x, u) =

xn+1eux

ex + 1
.
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In differentiating g at a point u0 ∈ (0, 1) we can restrict u to an interval [a, b] ⊂ (0, 1)
containing u0 in its interior, that is, 0 < a < u0 < b < 1. For all u ∈ [a, b] and x ∈ R we
have ∣∣∣∣∂f∂u (x, u)

∣∣∣∣ ≤ G(x) =

{
|x|n+1eux ≤ |x|n+1e−a|x|, x < 0,

|x|n+1e(u−1)x ≤ |x|n+1e−(1−b)|x|, x ≥ 0.

Since a and 1− b are positive, G is integrable on R. By Theorem 2.27, g is differentiable.

(III)(a) If E = (a, b] is an h-interval, then m(E/c) = m((b/c, a/c]) = a/c − b/c = m(E)/c,
so ν(E) = m(E). Since m and ν are Lebesgue-Stieltjes measures that agree on h-intervals,
by uniqueness they are the same.

(b) For an indicator f = χE we have c
∫
χE(cx) m(dx) = c

∫
χE/c(x) m(dx) = ν(E) =

m(E) =
∫
χE(x) m(dx) by part (a), so the result is true when f is such an indicator,

and hence also (by linearity) when f is a simple function. For general f ∈ L+ there are
simple functions ϕn ↗ f , so they satisfy c

∫
ϕn(cx) m(dx) =

∫
ϕn(x) m(dx). By Monotone

Convergence we can take the limit of both the left and right sides to obtain c
∫
f(cx) m(dx) =∫

f(x) m(dx).
(c) Let g(x) =

∑∞
n=1 |f(nx)|/nγ. By part (b) and Monotone Convergence we have∫

g(x) m(dx) =
∞∑
n=1

1

nγ

∫
|f(nx)| m(dx) =

∞∑
n=1

1

n1+γ

∫
|f(x)| m(dx) <∞.

This shows that g <∞ a.e. For any x with g(x) <∞, the terms of the series must approach
0, so we conclude f(nx)/nγ → 0 a.e.

(IV)(a) Since f is strictly positive, we have φ = ∩n≥1{x : f(x) ≤ 1/n}. Hence limn µ({x :
f(x) ≤ 1/n} = 0 so there exists N with µ({x : f(x) ≤ 1/N}) < α/2. If E satisfies µ(E) > α
this means

µ(E ∩ {x : f(x) > 1/N}) ≥ µ(E)− µ({x : f(x) ≤ 1/N}) > α/2

and therefore∫
E

f dµ ≥
∫
E∩{x:f(x)>1/N}

f dµ ≥ 1

N
µ(E ∩ {x : f(x) > 1/N}) > 1

N

α

2
.

This shows the desired infimum over E is strictly positive.
(b) Let X = (0,∞), f(x) = 1/x and let µ be Lebesgue measure. Then f is strictly

positive, but given α > 0 we have

lim
n

∫
[n,n+α]

f dµ = lim
n

log
(

1 +
α

n

)
= 0,
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so the desired infimum is 0.

(V) Let fn(x) = x
n
f(x)χ[0,n](x). Then 0 ≤ fn(x) ≤ f(x), fn(x) → f(x) = 0 for all x, and

f ∈ L1, so by Dominated Convergence,

lim
n

1

n

∫
[0,n]

xf(x) dx = lim
n

∫
fn(x) dx =

∫
f(x) dx = 0.
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