MATH 525a ASSIGNMENT 5 SOLUTIONS
 FALL 2016
 Prof. Alexander

Chapter 2

(20) We may assume all the functions are real-valued, otherwise consider real and imaginary parts separately. Then $g_{n}+f_{n} \geq 0$ and $g_{n}-f_{n} \geq 0$, so by Fatou's Lemma,

$$
\begin{aligned}
& \int g+\liminf \int f_{n}=\lim \int g_{n}+\lim \inf \int f_{n}=\liminf \int\left(g_{n}+f_{n}\right) \geq \int(g+f) \\
& \int g-\lim \sup \int f_{n}=\lim \int g_{n}-\limsup \int f_{n}=\liminf \int\left(g_{n}-f_{n}\right) \geq \int(g-f)
\end{aligned}
$$

Subtracting $\int g$ from both sides we get $\lim \inf \int f_{n} \geq \int f \geq \limsup \int f_{n}$, so $\int f_{n} \rightarrow \int f$.
(21) If $\int\left|f_{n}-f\right| \rightarrow 0$ then

$$
\left|\int\right| f_{n}\left|-\int\right| f| | \leq \int| | f_{n}|-|f|| \leq \int\left|f_{n}-f\right| \rightarrow 0
$$

Conversely suppose $\int\left|f_{n}\right| \rightarrow \int|f|$. Let $g_{n}=\left|f_{n}\right|+|f|, g=2|f|, h_{n}=\left|f_{n}-f\right|, h=0$. Then $h_{n}, g_{n}, h, g \in L^{1}, h_{n} \rightarrow h$ a.e., $g_{n} \rightarrow g$ a.e., $\left|h_{n}\right| \leq g_{n}, \int g_{n} \rightarrow \int g$, so by problem 20, $\int h_{n} \rightarrow \int h$, that is, $\int\left|f_{n}-f\right| \rightarrow 0$.
(22) If f is a function on \mathbb{N}, then $\int f$ is well-defined provided the positive and negative terms in the sum $\sum_{k=1}^{\infty} f(k)$ are not both infinite, and in this case, $\int f d \mu$ is equal to this sum. Fatou's Lemma says that if $f_{n}(k) \geq 0$ for all n, k, then

$$
\sum_{k=1}^{\infty} \liminf _{n} f_{n}(k) \geq \liminf _{n} \sum_{k=1}^{\infty} f_{n}(k) .
$$

Monotone Convergence says that if $0 \leq f_{n}(k) \nearrow f(k)$ for all k, then

$$
\sum_{k=1}^{\infty} f(k)=\lim _{n} \sum_{k=1}^{\infty} f_{n}(k) .
$$

Dominated Convergence says that if there exists a sequence $g(k) \geq 0$ with $\sum_{k} g(k)<\infty$ and $\left|f_{n}(k)\right| \leq g(k)$ for all n, k, then $\sum_{k=1}^{\infty} f(k)$ converges and

$$
\sum_{k=1}^{\infty} f(k)=\lim _{n} \sum_{k=1}^{\infty} f_{n}(k) .
$$

(25)(a) From calculus, $\int f d m=\int_{0}^{1} x^{-1 / 2} d x=\left.2 x^{1 / 2}\right|_{0} ^{1}=2$. Let $g_{k}(x)=\sum_{n=1}^{k} 2^{-n} f\left(x-r_{n}\right)$. Since f is nonnegative, $g_{k} \nearrow g$, so by Monotone Convergence we have

$$
\int g d m=\lim _{k} \int g_{k} d m=\lim _{k} \sum_{n=1}^{k} 2^{-n} \int f\left(x-r_{n}\right) m(d x)=2 \lim _{k} \sum_{n=1}^{k} 2^{-n}=2<\infty
$$

so $g<\infty$ a.e.
(b) Given a nonempty interval (a, b) there exists a rational $r_{n} \in(a, b)$. Then $g(x) \geq$ $2^{-n} f\left(x-r_{n}\right) \nearrow \infty$ as $x \searrow r_{n}$, so g is unbounded on every interval. This means g cannot be continuous anywhere, since if it were continuous at some x it would be bounded in a neighborhood of x. Even if g is modified on a null set N, for each rational r_{n} there is a sequence $x_{k} \notin N$ with $x_{k} \searrow r_{n}$, so $g\left(x_{k}\right) \rightarrow \infty$ as above, so g is still unbounded on every interval, and hence continuous nowhere.
(c) Since $g<\infty$ a.e., we have $g^{2}<\infty$ a.e. If (a, b) is an interval and r_{n} is a rational in (a, b), then for some $\epsilon>0$,

$$
\begin{aligned}
\int_{(a, b)} g^{2} d m & \geq \int_{a}^{b} 2^{-2 n} f^{2}\left(x-r_{n}\right) d x \geq 2^{-2 n} \int_{r_{n}}^{r_{n}+\epsilon} f^{2}\left(x-r_{n}\right) d x \\
& =2^{-2 n} \int_{0}^{\epsilon} f^{2}(u) d u=2^{-2 n} \int_{0}^{\epsilon} u^{-1} d u=\infty
\end{aligned}
$$

(I) Let $t_{n} \searrow 0$. Then

$$
\frac{F\left(t_{n}\right)-F(0)}{t_{n}-0}=\int_{(0, \infty)} \frac{1}{t_{n}}\left(\frac{1}{x+t_{n}}-\frac{1}{x}\right) \mu(d x)=-\int_{(0, \infty)} \frac{1}{x\left(x+t_{n}\right)} \mu(d x)
$$

Let $f_{n}(x)=1 /\left(x\left(x+t_{n}\right)\right)$ and $f(x)=1 / x^{2}$. Then $0 \leq f_{n} \nearrow f$ so by Monotone Convergence,

$$
\lim _{n} \frac{F\left(t_{n}\right)-F(0)}{t_{n}-0}=-\lim _{n} \int_{(0, \infty)} f_{n} d \mu=-\int_{(0, \infty)} f d \mu=-\int_{(0, \infty)} \frac{1}{x^{2}} \mu(d x)
$$

so

$$
F^{R}(0)=-\int_{(0, \infty)} \frac{1}{x^{2}} \mu(d x)
$$

(II) Let

$$
f(x, u)=\frac{x^{n} e^{u x}}{e^{x}+1}
$$

Then

$$
\frac{\partial f}{\partial u}(x, u)=\frac{x^{n+1} e^{u x}}{e^{x}+1}
$$

In differentiating g at a point $u_{0} \in(0,1)$ we can restrict u to an interval $[a, b] \subset(0,1)$ containing u_{0} in its interior, that is, $0<a<u_{0}<b<1$. For all $u \in[a, b]$ and $x \in \mathbb{R}$ we have

$$
\left|\frac{\partial f}{\partial u}(x, u)\right| \leq G(x)= \begin{cases}|x|^{n+1} e^{u x} \leq|x|^{n+1} e^{-a|x|}, & x<0 \\ |x|^{n+1} e^{(u-1) x} \leq|x|^{n+1} e^{-(1-b)|x|}, & x \geq 0\end{cases}
$$

Since a and $1-b$ are positive, G is integrable on \mathbb{R}. By Theorem 2.27, g is differentiable.
(III)(a) If $E=(a, b]$ is an h-interval, then $m(E / c)=m((b / c, a / c])=a / c-b / c=m(E) / c$, so $\nu(E)=m(E)$. Since m and ν are Lebesgue-Stieltjes measures that agree on h-intervals, by uniqueness they are the same.
(b) For an indicator $f=\chi_{E}$ we have $c \int \chi_{E}(c x) m(d x)=c \int \chi_{E / c}(x) m(d x)=\nu(E)=$ $m(E)=\int \chi_{E}(x) m(d x)$ by part (a), so the result is true when f is such an indicator, and hence also (by linearity) when f is a simple function. For general $f \in L^{+}$there are simple functions $\varphi_{n} \nearrow f$, so they satisfy $c \int \varphi_{n}(c x) m(d x)=\int \varphi_{n}(x) m(d x)$. By Monotone Convergence we can take the limit of both the left and right sides to obtain $c \int f(c x) m(d x)=$ $\int f(x) m(d x)$.
(c) Let $g(x)=\sum_{n=1}^{\infty}|f(n x)| / n^{\gamma}$. By part (b) and Monotone Convergence we have

$$
\int g(x) m(d x)=\sum_{n=1}^{\infty} \frac{1}{n^{\gamma}} \int|f(n x)| m(d x)=\sum_{n=1}^{\infty} \frac{1}{n^{1+\gamma}} \int|f(x)| m(d x)<\infty .
$$

This shows that $g<\infty$ a.e. For any x with $g(x)<\infty$, the terms of the series must approach 0 , so we conclude $f(n x) / n^{\gamma} \rightarrow 0$ a.e.
(IV)(a) Since f is strictly positive, we have $\phi=\cap_{n \geq 1}\{x: f(x) \leq 1 / n\}$. Hence $\lim _{n} \mu(\{x:$ $f(x) \leq 1 / n\}=0$ so there exists N with $\mu(\{x: f(x) \leq 1 / N\})<\alpha / 2$. If E satisfies $\mu(E)>\alpha$ this means

$$
\mu(E \cap\{x: f(x)>1 / N\}) \geq \mu(E)-\mu(\{x: f(x) \leq 1 / N\})>\alpha / 2
$$

and therefore

$$
\int_{E} f d \mu \geq \int_{E \cap\{x: f(x)>1 / N\}} f d \mu \geq \frac{1}{N} \mu(E \cap\{x: f(x)>1 / N\})>\frac{1}{N} \frac{\alpha}{2}
$$

This shows the desired infimum over E is strictly positive.
(b) Let $X=(0, \infty), f(x)=1 / x$ and let μ be Lebesgue measure. Then f is strictly positive, but given $\alpha>0$ we have

$$
\lim _{n} \int_{[n, n+\alpha]} f d \mu=\lim _{n} \log \left(1+\frac{\alpha}{n}\right)=0,
$$

so the desired infimum is 0 .
(V) Let $f_{n}(x)=\frac{x}{n} f(x) \chi_{[0, n]}(x)$. Then $0 \leq f_{n}(x) \leq f(x), f_{n}(x) \rightarrow f(x)=0$ for all x, and $f \in L^{1}$, so by Dominated Convergence,

$$
\lim _{n} \frac{1}{n} \int_{[0, n]} x f(x) d x=\lim _{n} \int f_{n}(x) d x=\int f(x) d x=0 .
$$

