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Chapter 2

(3) Since f,, is measurable for all n, so is g = limsup f,, — liminf f,,, by 2.6 and 2.7. Hence
{z :lim, f,(z) exists} = ¢g~(0) is a measurable set.

(6) Let £ be a non-lebesgue-measurable subset of R. Then sup,cx X{a} = X£ is not a mea-
surable function, though x4 is measurable for each a € E.

(13) Using Fatou’s Lemma twice,
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Therefore all of these are equal, in particular the right sides of the first two inequalities are
equal to each other, and to [, f, which says that lim,, [, f, = [, f.

For an example let f, = nx(,1/n) + X1, and f = X[1,0c). Then f, — f pointwise and
[ f=1lim, [ f, = oo, but f(m) fao=1% f(0,1)f =0.

14) Let f € LT and AN(E) = [, f du. Clearly A(¢) = 0. For E, Es,... € M disjoint, we
(14) g du y j
have
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so by Monotone Convergence,

AUPE;) = /fX(u‘foEi) = hm/fX(u?Ei) = lim/ZfXEi = limZ/ [ = Z)\(Ei),
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meaning A is countably additive.
Next, for simple g = >~ | ¢;xp, in L*, we have
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For general g € Lt let 0 < ¢, ' g with ¢,, simple. Then by Monotone Convergence (twice),

since fon /7 f9,
/gd)\zlim/gpnd/\:hm/fgpn d,u:/fgdu.

(15) We have 0 < fi—f,, /* fi— [, so by Monotone Convergence, lim,, [(f1—f.) = [(fi—f)-
Subtracting [ f; from both sides and taking the negative gives lim, [ f,, = [ f.

(16) Let E,, = {z : f(z) > 1/n}. Then f > Lxp, soforalln, Lu(E,) = [ txg, < [ f < oo,
meaning u(E,) < co. Now Ey; C Fy C ... and U, E, = {x : f(x) > 0}, so by continuity from
below for the measure A(4) = [, f, we get
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Thus there exists n satisfying both u(E,) < co and fEn f>[f—e

(A)(a) Let € > 0. We first approximate | f| by a bounded function: let E, = {x : |f(z)| < n}
and f,, = |f|xg,. By Monotone Convergence, [ f,, /* [|f], so there exists N such that
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Since fy < N, we then have
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(b) Let € > 0. By (a), there exists § > 0 such that

O<y—z<d = m((z,y]) <0 = |F(y) |—‘/ fdm‘ |f]dm<e.

This shows F' is continuous (in fact uniformly continuous.)

(B) No. An example from lecture shows this: let f, = nxi/m. Then f, — 0 a.e., so
[limsup, f, =0, but [ f, =1 for all n so limsup,, [ f, = 1.

(C) SOLUTION 1, BASED ON THE HINT: Let ¢, \, 0. We have

fn(x) /0 < for some € > 0, |f,(x)| > € for infinitely many n
<= for some k, |f.(z)| > € for infinitely many n (1)
<= for some k, we have x € N, B,(€x).

Now since the given series converges, its tail converges to 0, so that for fixed e,

p(Bm(€) = i (Unzmiz = [fu(2)] > €}) < Zu {z:|fu(2)] > €}) = 0 as m — o0,

50 (N Bm(€)) = 0. Therefore by (1),

M({x:fn 740} Z :O,

that is, f, — 0 a.e.
SOLUTION 2: Fix € > 0 and let A,, = {z : |f.(z)| > €}. Then

ZXA ) < oo = z € A, for only finitely many n = limsup |f,(z)| < e.

n

Further, by assumption we have [ (3" xa,) du =Y, 1(A,) < co. Therefore > xa, < 00
a.e., so limsup,, |f.(z)| < e for almost every x. Since € is arbitrary, this shows f,, — 0 a.e.

(D)(a) Let g = Z] X, Then [, g dp= Z . W(F;) > 7/2 > 3. There must then be an

x € X with g(x) > 3, since otherwise we would have [, g du < [ 3 du = 3. But then
g(z) > 4, which means x is in at least 4 of the sets F.



