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(3) Since fn is measurable for all n, so is g = lim sup fn − lim inf fn, by 2.6 and 2.7. Hence
{x : limn fn(x) exists} = g−1(0) is a measurable set.

(6) Let E be a non-lebesgue-measurable subset of R. Then supa∈E χ{a} = χE is not a mea-
surable function, though χ{a} is measurable for each a ∈ E.

(13) Using Fatou’s Lemma twice,∫
E

f ≤ lim inf

∫
E

fn

≤ lim sup

∫
E

fn

= lim sup

(∫
fn −

∫
Ec

fn

)
= lim

n

∫
fn − lim inf

∫
Ec

fn

≤
∫
f −

∫
Ec

lim inf fn

=

∫
f −

∫
Ec

f

=

∫
E

f.

Therefore all of these are equal, in particular the right sides of the first two inequalities are
equal to each other, and to

∫
E
f , which says that limn

∫
E
fn =

∫
E
f .

For an example let fn = nχ(0,1/n) + χ[1,n] and f = χ[1,∞). Then fn → f pointwise and∫
f = limn

∫
fn =∞, but

∫
(0,1)

fn = 1 6→
∫
(0,1)

f = 0.

(14) Let f ∈ L+ and λ(E) =
∫
E
f dµ. Clearly λ(φ) = 0. For E1, E2, ... ∈ M disjoint, we

have
0 ≤ fχ∪n1Ei

↗ fχ∪∞1 Ei
,
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so by Monotone Convergence,

λ (∪∞1 Ei) =

∫
fχ(∪∞1 Ei) = lim

n

∫
fχ(∪n1Ei) = lim

n

∫ n∑
i=1

fχEi
= lim

n

n∑
i=1

∫
Ei

f =
∞∑
i=1

λ(Ei),

meaning λ is countably additive.
Next, for simple g =

∑m
i=1 ciχFi

in L+, we have∫
g dλ =

m∑
i=1

ciλ(Fi) =
m∑
i=1

ci

∫
Fi

f dµ =

∫ m∑
i=1

cifχFi
dµ =

∫
fg dµ.

For general g ∈ L+, let 0 ≤ ϕn ↗ g with ϕn simple. Then by Monotone Convergence (twice),
since fϕn ↗ fg, ∫

g dλ = lim
n

∫
ϕn dλ = lim

n

∫
fϕn dµ =

∫
fg dµ.

(15) We have 0 ≤ f1−fn ↗ f1−f , so by Monotone Convergence, limn

∫
(f1−fn) =

∫
(f1−f).

Subtracting
∫
f1 from both sides and taking the negative gives limn

∫
fn =

∫
f .

(16) Let En = {x : f(x) ≥ 1/n}. Then f ≥ 1
n
χEn so for all n, 1

n
µ(En) =

∫
1
n
χEn ≤

∫
f <∞,

meaning µ(En) <∞. Now E1 ⊂ E2 ⊂ ... and ∪nEn = {x : f(x) > 0}, so by continuity from
below for the measure λ(A) =

∫
A
f , we get∫

En

f = λ(En)→ λ(∪iEi) =

∫
(∪iEi)

f =

∫
f.

Thus there exists n satisfying both µ(En) <∞ and
∫
En
f >

∫
f − ε.

(A)(a) Let ε > 0. We first approximate |f | by a bounded function: let En = {x : |f(x)| ≤ n}
and fn = |f |χEn . By Monotone Convergence,

∫
fn ↗

∫
|f |, so there exists N such that∫

X

(|f | − fN) dµ =

∫
X

|f | dµ−
∫
X

fN dµ <
ε

2
.

Since fN ≤ N , we then have

µ(A) <
ε

2N
=⇒

∫
A

fN dµ ≤
∫
A

N dµ = Nµ(A) <
ε

2
.

Therefore

µ(A) <
ε

2N
=⇒

∫
A

|f | dµ =

∫
A

fN dµ+

∫
A

(|f | − fN) dµ <
ε

2
+

∫
X

(|f | − fN) dµ < ε.
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(b) Let ε > 0. By (a), there exists δ > 0 such that

0 < y − x < δ =⇒ m((x, y]) < δ =⇒ |F (y)− F (x)| =
∣∣∣∣∫

(x,y]

f dm

∣∣∣∣ ≤ ∫
(x,y]

|f | dm < ε.

This shows F is continuous (in fact uniformly continuous.)

(B) No. An example from lecture shows this: let fn = nχ(0,1/n]. Then fn → 0 a.e., so∫
lim supn fn = 0, but

∫
fn = 1 for all n so lim supn

∫
fn = 1.

(C) SOLUTION 1, BASED ON THE HINT: Let εk ↘ 0. We have

fn(x) 6→ 0 ⇐⇒ for some ε > 0, |fn(x)| > ε for infinitely many n

⇐⇒ for some k, |fn(x)| > εk for infinitely many n (1)

⇐⇒ for some k, we have x ∈ ∩mBm(εk).

Now since the given series converges, its tail converges to 0, so that for fixed ε,

µ(Bm(ε)) = µ (∪n≥m{x : |fn(x)| > ε}) ≤
∞∑

n=m

µ ({x : |fn(x)| > ε})→ 0 as m→∞,

so µ(∩mBm(ε)) = 0. Therefore by (1),

µ ({x : fn(x) 6→ 0}) ≤
∞∑
k=1

µ (∩mBm(εk)) = 0,

that is, fn → 0 a.e.
SOLUTION 2: Fix ε > 0 and let An = {x : |fn(x)| > ε}. Then∑

n

χAn(x) <∞ =⇒ x ∈ An for only finitely many n =⇒ lim sup
n
|fn(x)| ≤ ε.

Further, by assumption we have
∫

(
∑

n χAn) dµ =
∑

n µ(An) <∞. Therefore
∑

n χAn <∞
a.e., so lim supn |fn(x)| ≤ ε for almost every x. Since ε is arbitrary, this shows fn → 0 a.e.

(D)(a) Let g =
∑7

j=1 χFj
. Then

∫
X
g dµ =

∑7
j=1 µ(Fj) ≥ 7/2 > 3. There must then be an

x ∈ X with g(x) > 3, since otherwise we would have
∫
X
g dµ ≤

∫
X

3 dµ = 3. But then
g(x) ≥ 4, which means x is in at least 4 of the sets Fj.
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