MATH 525a ASSIGNMENT 4 SOLUTIONS

FALL 2016
Prof. Alexander

Chapter 2
(3) Since f_{n} is measurable for all n, so is $g=\limsup f_{n}-\liminf f_{n}$, by 2.6 and 2.7. Hence $\left\{x: \lim _{n} f_{n}(x)\right.$ exists $\}=g^{-1}(0)$ is a measurable set.
(6) Let E be a non-lebesgue-measurable subset of \mathbb{R}. Then $\sup _{a \in E} \chi_{\{a\}}=\chi_{E}$ is not a measurable function, though $\chi_{\{a\}}$ is measurable for each $a \in E$.
(13) Using Fatou's Lemma twice,

$$
\begin{aligned}
\int_{E} f & \leq \liminf \int_{E} f_{n} \\
& \leq \limsup \int_{E} f_{n} \\
& =\limsup \left(\int f_{n}-\int_{E^{c}} f_{n}\right) \\
& =\lim _{n} \int f_{n}-\liminf \int_{E^{c}} f_{n} \\
& \leq \int f-\int_{E^{c}} \liminf f_{n} \\
& =\int f-\int_{E^{c}} f \\
& =\int_{E} f .
\end{aligned}
$$

Therefore all of these are equal, in particular the right sides of the first two inequalities are equal to each other, and to $\int_{E} f$, which says that $\lim _{n} \int_{E} f_{n}=\int_{E} f$.

For an example let $f_{n}=n \chi_{(0,1 / n)}+\chi_{[1, n]}$ and $f=\chi_{[1, \infty)}$. Then $f_{n} \rightarrow f$ pointwise and $\int f=\lim _{n} \int f_{n}=\infty$, but $\int_{(0,1)} f_{n}=1 \nrightarrow \int_{(0,1)} f=0$.
(14) Let $f \in L^{+}$and $\lambda(E)=\int_{E} f d \mu$. Clearly $\lambda(\phi)=0$. For $E_{1}, E_{2}, \ldots \in \mathcal{M}$ disjoint, we have

$$
0 \leq f \chi_{\cup_{1}^{n} E_{i}} \nearrow f \chi_{\cup_{1}^{\infty} E_{i}},
$$

so by Monotone Convergence,

$$
\lambda\left(\cup_{1}^{\infty} E_{i}\right)=\int f \chi_{\left(\cup_{1}^{\infty} E_{i}\right)}=\lim _{n} \int f \chi_{\left(\cup_{1}^{n} E_{i}\right)}=\lim _{n} \int \sum_{i=1}^{n} f \chi_{E_{i}}=\lim _{n} \sum_{i=1}^{n} \int_{E_{i}} f=\sum_{i=1}^{\infty} \lambda\left(E_{i}\right),
$$

meaning λ is countably additive.
Next, for simple $g=\sum_{i=1}^{m} c_{i} \chi_{F_{i}}$ in L^{+}, we have

$$
\int g d \lambda=\sum_{i=1}^{m} c_{i} \lambda\left(F_{i}\right)=\sum_{i=1}^{m} c_{i} \int_{F_{i}} f d \mu=\int \sum_{i=1}^{m} c_{i} f \chi_{F_{i}} d \mu=\int f g d \mu .
$$

For general $g \in L^{+}$, let $0 \leq \varphi_{n} \nearrow g$ with φ_{n} simple. Then by Monotone Convergence (twice), since $f \varphi_{n} \nearrow f g$,

$$
\int g d \lambda=\lim _{n} \int \varphi_{n} d \lambda=\lim _{n} \int f \varphi_{n} d \mu=\int f g d \mu
$$

(15) We have $0 \leq f_{1}-f_{n} \nearrow f_{1}-f$, so by Monotone Convergence, $\lim _{n} \int\left(f_{1}-f_{n}\right)=\int\left(f_{1}-f\right)$. Subtracting $\int f_{1}$ from both sides and taking the negative gives $\lim _{n} \int f_{n}=\int f$.
(16) Let $E_{n}=\{x: f(x) \geq 1 / n\}$. Then $f \geq \frac{1}{n} \chi_{E_{n}}$ so for all $n, \frac{1}{n} \mu\left(E_{n}\right)=\int \frac{1}{n} \chi_{E_{n}} \leq \int f<\infty$, meaning $\mu\left(E_{n}\right)<\infty$. Now $E_{1} \subset E_{2} \subset \ldots$ and $\cup_{n} E_{n}=\{x: f(x)>0\}$, so by continuity from below for the measure $\lambda(A)=\int_{A} f$, we get

$$
\int_{E_{n}} f=\lambda\left(E_{n}\right) \rightarrow \lambda\left(\cup_{i} E_{i}\right)=\int_{\left(\cup_{i} E_{i}\right)} f=\int f
$$

Thus there exists n satisfying both $\mu\left(E_{n}\right)<\infty$ and $\int_{E_{n}} f>\int f-\epsilon$.
(A)(a) Let $\epsilon>0$. We first approximate $|f|$ by a bounded function: let $E_{n}=\{x:|f(x)| \leq n\}$ and $f_{n}=|f| \chi_{E_{n}}$. By Monotone Convergence, $\int f_{n} \nearrow \int|f|$, so there exists N such that

$$
\int_{X}\left(|f|-f_{N}\right) d \mu=\int_{X}|f| d \mu-\int_{X} f_{N} d \mu<\frac{\epsilon}{2} .
$$

Since $f_{N} \leq N$, we then have

$$
\mu(A)<\frac{\epsilon}{2 N} \Longrightarrow \int_{A} f_{N} d \mu \leq \int_{A} N d \mu=N \mu(A)<\frac{\epsilon}{2} .
$$

Therefore

$$
\mu(A)<\frac{\epsilon}{2 N} \Longrightarrow \int_{A}|f| d \mu=\int_{A} f_{N} d \mu+\int_{A}\left(|f|-f_{N}\right) d \mu<\frac{\epsilon}{2}+\int_{X}\left(|f|-f_{N}\right) d \mu<\epsilon
$$

(b) Let $\epsilon>0$. By (a), there exists $\delta>0$ such that

$$
0<y-x<\delta \Longrightarrow m((x, y])<\delta \Longrightarrow|F(y)-F(x)|=\left|\int_{(x, y]} f d m\right| \leq \int_{(x, y]}|f| d m<\epsilon
$$

This shows F is continuous (in fact uniformly continuous.)
(B) No. An example from lecture shows this: let $f_{n}=n \chi_{(0,1 / n]}$. Then $f_{n} \rightarrow 0$ a.e., so $\int \limsup \sup _{n} f_{n}=0$, but $\int f_{n}=1$ for all n so $\limsup \sup _{n} \int f_{n}=1$.
(C) SOLUTION 1, BASED ON THE HINT: Let $\epsilon_{k} \searrow 0$. We have

$$
\begin{align*}
f_{n}(x) \nrightarrow 0 & \Longleftrightarrow \text { for some } \epsilon>0,\left|f_{n}(x)\right|>\epsilon \text { for infinitely many } n \\
& \Longleftrightarrow \text { for some } k,\left|f_{n}(x)\right|>\epsilon_{k} \text { for infinitely many } n \tag{1}\\
& \Longleftrightarrow \text { for some } k, \text { we have } x \in \cap_{m} B_{m}\left(\epsilon_{k}\right) .
\end{align*}
$$

Now since the given series converges, its tail converges to 0 , so that for fixed ϵ,

$$
\mu\left(B_{m}(\epsilon)\right)=\mu\left(\cup_{n \geq m}\left\{x:\left|f_{n}(x)\right|>\epsilon\right\}\right) \leq \sum_{n=m}^{\infty} \mu\left(\left\{x:\left|f_{n}(x)\right|>\epsilon\right\}\right) \rightarrow 0 \text { as } m \rightarrow \infty
$$

so $\mu\left(\cap_{m} B_{m}(\epsilon)\right)=0$. Therefore by (1),

$$
\mu\left(\left\{x: f_{n}(x) \nrightarrow 0\right\}\right) \leq \sum_{k=1}^{\infty} \mu\left(\cap_{m} B_{m}\left(\epsilon_{k}\right)\right)=0
$$

that is, $f_{n} \rightarrow 0$ a.e.
SOLUTION 2: Fix $\epsilon>0$ and let $A_{n}=\left\{x:\left|f_{n}(x)\right|>\epsilon\right\}$. Then

$$
\sum_{n} \chi_{A_{n}}(x)<\infty \Longrightarrow x \in A_{n} \text { for only finitely many } n \Longrightarrow \limsup _{n}\left|f_{n}(x)\right| \leq \epsilon
$$

Further, by assumption we have $\int\left(\sum_{n} \chi_{A_{n}}\right) d \mu=\sum_{n} \mu\left(A_{n}\right)<\infty$. Therefore $\sum_{n} \chi_{A_{n}}<\infty$ a.e., so $\lim \sup _{n}\left|f_{n}(x)\right| \leq \epsilon$ for almost every x. Since ϵ is arbitrary, this shows $f_{n} \rightarrow 0$ a.e.
(D)(a) Let $g=\sum_{j=1}^{7} \chi_{F_{j}}$. Then $\int_{X} g d \mu=\sum_{j=1}^{7} \mu\left(F_{j}\right) \geq 7 / 2>3$. There must then be an $x \in X$ with $g(x)>3$, since otherwise we would have $\int_{X} g d \mu \leq \int_{X} 3 d \mu=3$. But then $g(x) \geq 4$, which means x is in at least 4 of the sets F_{j}.

