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Chapter 1

(18)(a) By the definition of p*, there exist {A;,7 > 1} with A; € A/ E C U°A;, and
Doy m(Ay) < pt(E) +e Let A=UA; Then A€ A,, B C Aand p*(A) <377 ' (4)) =
Do n(4;) < pi(E) +e

(b) Suppose first that E is p*-measurable. By (a), for each n > 1 there exists B, € A,
with £ C B, pu*(B,) < p*(E) + 1/n. Let B = N,B,. Then £ C B and B € Ay
and p*(E) < p*(B) < p*(B,) < p*(E) + 1/n for all n, so p*(E) = p*(B). Since E is p*-
measurable, we have p*(B) = p*(BNE)+p*(B\E) = p*(E)+p*(B\E) = u*(B)+p*(B\E),
so w(B\FE) = 0.

Conversely suppose there exists B € A,s with p*(B\E) = 0. By the preceding para-
graph (applied to B\ E in place of F), there exists N € A,s with B\E' C N and p*(N) = 0.
Since N € A,s and the p*-measurable sets form a o-algebra, we can conclude that N is u*-
measurable. Since p* is a complete measure on the o-algebra {all p*-measurable sets}, this
shows that B\ F is u*-measurable. Hence £ = B°U(B\FE) is a union of two p*-measurable
sets so is p*-measurable, and therefore E is p*-measurable as well.

(26) Let £ € M,, with u(E) < oo, and € > 0. By Theorem 1.18, there is an open U D F
with u(U\E) < €/2. Since U is open in R, U is a finite or countable union of disjoint open
intervals: U = U;I;. If this is a finite union, we are done, so suppose it is infinite. There
exists n such that for A =U7_, [},

u(A) =371y > (Z M(Ij)) —5=u)~ 5
Therefore pu(EAA) = u(E\A) + p(A\E) < u(U\A) + w(U\E) < €/2+€/2 =e.

(28) Let a,, < a with a,, /* a. Then by continuity from above, up({a}) = pr(Ny(an,a]) =
lim,, pup((an, al) = lim,(F(a) — F(a,)) = F(a) — F(a—).

Then using this result we get pur([a,b)) = pur((a,b))+pr({a})—pr({b}) = F(b)— F(a)+
Fla) = Fla=) = (F(b) = F(b=)) = F(b—) — F(a—).

Similarly, pp(la, 0]) = pr((a, b)) +pr({a}) = F(b)=F(a)+F(a) - F(a—) = F(b)—F(a—),
and pp((a,0)) = pr((a, b)) — pr({b}) = F(b) — F(a) — F(b) + F(b—) = F(b—) — F(a).

(30) Let E € £ with m(F) > 0 and let « € (0,1). By Theorem 1.18, there is an open U D F
with m(U) < m(E)/a. Since U is open in R, U is a finite or countable union of disjoint



open intervals: U = U;I;. Therefore

Zm(Eﬂ ;) =m(E) >am(U) = aZm([j).

This means there must exist at least one j with m(E N 1;) > am(l;), so we can take I = I;.

(31) Let E € £ with m(E) > 0, and let « € (3/4,1). By #30 there exists an interval [
with m(E N 1) > am(l). Let J = (—im(I),3m(I)) and let F = E N I. Suppose there is
az € J with z ¢ FF — F. This means that F' and its translate F, = {z + 2z : © € F'} are
disjoint. (If there were a y € F'N F,, we would have y = x + z for some = € F and then
z=y—x € F—F, acontradiction.) Let I, = {x + 2z : z € I}. Then F U F, is contained in

I U1, which is an interval of length at most 2m(I), since |z| < 3m(I). Hence

S,

which gives o < 3/4, a contradiction. Thus no such z exists, i.e. JCF —F CFE — FE.

2am(I) <2m(F)=m(FUF,) <m(IUl,) <

(I) We need to verify countable additivity. Suppose Ej, Es,... are disjoint. By subaddi-
tivity of outer measures we have p*(US2 E,) < > p*(E,). By monotonicity and finite
additivity, for all N we have

N
P (UL By) > (UL By) > Zﬂ*(En)

n=1
Letting N — oo shows that p*(US2, E,) > > 7 1*(E,), so we have equality, i.e. countable
additivity.

(IT) Let Ey = EN[—N, N]. We will show that m({z? : x € Ex}) = 0 for all N, which is
sufficient since {2? : z € E} = U¥_,;{2? : ¥ € Ex}. For an interval (a,b) C [0, N + 1], we
have m({z? : x € (a,b)}) =b* —a® = (b+a)(b—a) < 2(N +1)m((a,b)). It is easily checked

that similarly,
m({a? 2 € (a,5)}) < 2(N + Dm((a, b))
for all (a,b) C [-N —1,N + 1]. Let € > 0. Now

0=m(Ey) = inf {Z m((a;,b;)) : En C U§°1(aj7bj)}

and we can restrict the infimum to intervals contained in [N —1, N +1], there exist intervals
(aj,b;) C [N —1, N +1] with Exy C U32,(a;,b;) and 372 1m((aj, ;) < €/2(N +1). Then

m({z? xEEN}Si a],b))<2N+1Zm (a;,b;)) <,

7j=1



and e is arbitrary, so m({z%: x € Ex}) = 0.

(III)(a) Let G = Uaea N, be a union of open null sets. Let us refer to a ball (i.e. interval) with
rational center and radius as a rational ball. There are only countably many rational balls
in R. If a rational ball is contained in at least one N,, let us call it an included rational ball.
For each included rational ball B, we can pick a particular index o(B) such that B C Nyp)
(by the Axiom of Choice.)

For each x € G there is an included rational ball B, with z € B, C Nyg,). It follows
that G is actually the countable union G = UpN,(p), where the union is over all included
rational balls. Therefore G is null.

(b) Suppose F(z') = F(z") for some 2’ < z < z”. Then u((2',2")) < F(2")—F(z') = 0so
x is contained in the open null set (2, 2"), so x ¢ Supp(u). Conversely suppose x ¢ Supp(p).
Then there is a null open set N containing x; this open set contains an interval (z/,y) > z
and for every z” € (z,y) we have F(z") — F(2') = p((2',2"]) < u((2',y)) < u(N) = 0.

(IV) For n = 2 it is an equality (see Ch. 1 #9): u(A; U Ag) = p(A1) + p(A2) — (A N Ag).
Using induction, suppose that for some k > 2 the inquality is valid whenever n < k, and

consider measurable sets Ay, ..., Ag.1. Using the cases n = 2 and n = k we have
p (VA = i (U A4) + p(Agsr) — (U1 A0) N Agiq)
k

> p(A) = Y AN A+ p(Arn) — i (U (A 0 Ag))
i=1 1<i<j<k
k+1 k

> pA) = D (AN A) =Y p (A N Ak
i=1 1<i<j<k i=1
k41

~S ) - A ay),
i=1 1<i<j<k+1

so the desired inequality is also valid for n = k4 1. Thus it is valid for all n.



