MATH 525a ASSIGNMENT 3 SOLUTIONS

FALL 2016
Prof. Alexander

Chapter 1

(18)(a) By the definition of μ^{*}, there exist $\left\{A_{j}, j \geq 1\right\}$ with $A_{j} \in \mathcal{A}, E \subset \cup_{1}^{\infty} A_{j}$, and $\sum_{j=1}^{\infty} \mu\left(A_{j}\right) \leq \mu^{*}(E)+\epsilon$. Let $A=\cup_{1}^{\infty} A_{j}$. Then $A \in \mathcal{A}_{\sigma}, E \subset A$ and $\mu^{*}(A) \leq \sum_{1}^{\infty} \mu^{*}\left(A_{j}\right)=$ $\sum_{1}^{\infty} \mu\left(A_{j}\right) \leq \mu^{*}(E)+\epsilon$.
(b) Suppose first that E is μ^{*}-measurable. By (a), for each $n \geq 1$ there exists $B_{n} \in \mathcal{A}_{\sigma}$ with $E \subset B_{n}, \mu^{*}\left(B_{n}\right) \leq \mu^{*}(E)+1 / n$. Let $B=\cap_{n} B_{n}$. Then $E \subset B$ and $B \in \mathcal{A}_{\sigma \delta}$ and $\mu^{*}(E) \leq \mu^{*}(B) \leq \mu^{*}\left(B_{n}\right) \leq \mu^{*}(E)+1 / n$ for all n, so $\mu^{*}(E)=\mu^{*}(B)$. Since E is μ^{*} measurable, we have $\mu^{*}(B)=\mu^{*}(B \cap E)+\mu^{*}(B \backslash E)=\mu^{*}(E)+\mu^{*}(B \backslash E)=\mu^{*}(B)+\mu^{*}(B \backslash E)$, so $\mu^{*}(B \backslash E)=0$.

Conversely suppose there exists $B \in \mathcal{A}_{\sigma \delta}$ with $\mu^{*}(B \backslash E)=0$. By the preceding paragraph (applied to $B \backslash E$ in place of E), there exists $N \in \mathcal{A}_{\sigma \delta}$ with $B \backslash E \subset N$ and $\mu^{*}(N)=0$. Since $N \in \mathcal{A}_{\sigma \delta}$ and the μ^{*}-measurable sets form a σ-algebra, we can conclude that N is μ^{*} measurable. Since μ^{*} is a complete measure on the σ-algebra \{all μ^{*}-measurable sets $\}$, this shows that $B \backslash E$ is μ^{*}-measurable. Hence $E^{c}=B^{c} \cup(B \backslash E)$ is a union of two μ^{*}-measurable sets so is μ^{*}-measurable, and therefore E is μ^{*}-measurable as well.
(26) Let $E \in \mathcal{M}_{\mu}$ with $\mu(E)<\infty$, and $\epsilon>0$. By Theorem 1.18, there is an open $U \supset E$ with $\mu(U \backslash E)<\epsilon / 2$. Since U is open in \mathbb{R}, U is a finite or countable union of disjoint open intervals: $U=\cup_{j} I_{j}$. If this is a finite union, we are done, so suppose it is infinite. There exists n such that for $A=\cup_{j=1}^{n} I_{j}$,

$$
\mu(A)=\sum_{j=1}^{n} \mu\left(I_{j}\right)>\left(\sum_{j=1}^{\infty} \mu\left(I_{j}\right)\right)-\frac{\epsilon}{2}=\mu(U)-\frac{\epsilon}{2} .
$$

Therefore $\mu(E \triangle A)=\mu(E \backslash A)+\mu(A \backslash E) \leq \mu(U \backslash A)+\mu(U \backslash E)<\epsilon / 2+\epsilon / 2=\epsilon$.
(28) Let $a_{n}<a$ with $a_{n} \nearrow a$. Then by continuity from above, $\mu_{F}(\{a\})=\mu_{F}\left(\cap_{n}\left(a_{n}, a\right]\right)=$ $\lim _{n} \mu_{F}\left(\left(a_{n}, a\right]\right)=\lim _{n}\left(F(a)-F\left(a_{n}\right)\right)=F(a)-F(a-)$.

Then using this result we get $\mu_{F}([a, b))=\mu_{F}((a, b])+\mu_{F}(\{a\})-\mu_{F}(\{b\})=F(b)-F(a)+$ $F(a)-F(a-)-(F(b)-F(b-))=F(b-)-F(a-)$.

Similarly, $\mu_{F}([a, b])=\mu_{F}((a, b])+\mu_{F}(\{a\})=F(b)-F(a)+F(a)-F(a-)=F(b)-F(a-)$, and $\mu_{F}((a, b))=\mu_{F}((a, b])-\mu_{F}(\{b\})=F(b)-F(a)-F(b)+F(b-)=F(b-)-F(a)$.
(30) Let $E \in \mathcal{L}$ with $m(E)>0$ and let $\alpha \in(0,1)$. By Theorem 1.18 , there is an open $U \supset E$ with $m(U)<m(E) / \alpha$. Since U is open in \mathbb{R}, U is a finite or countable union of disjoint
open intervals: $U=\cup_{j} I_{j}$. Therefore

$$
\sum_{j} m\left(E \cap I_{j}\right)=m(E)>\alpha m(U)=\alpha \sum_{j} m\left(I_{j}\right)
$$

This means there must exist at least one j with $m\left(E \cap I_{j}\right)>\alpha m\left(I_{j}\right)$, so we can take $I=I_{j}$.
(31) Let $E \in \mathcal{L}$ with $m(E)>0$, and let $\alpha \in(3 / 4,1)$. By $\# 30$ there exists an interval I with $m(E \cap I)>\alpha m(I)$. Let $J=\left(-\frac{1}{2} m(I), \frac{1}{2} m(I)\right)$ and let $F=E \cap I$. Suppose there is a $z \in J$ with $z \notin F-F$. This means that F and its translate $F_{z}=\{x+z: x \in F\}$ are disjoint. (If there were a $y \in F \cap F_{z}$, we would have $y=x+z$ for some $x \in F$ and then $z=y-x \in F-F$, a contradiction.) Let $I_{z}=\{x+z: x \in I\}$. Then $F \cup F_{z}$ is contained in $I \cup I_{z}$, which is an interval of length at most $\frac{3}{2} m(I)$, since $|z|<\frac{1}{2} m(I)$. Hence

$$
2 \alpha m(I)<2 m(F)=m\left(F \cup F_{z}\right) \leq m\left(I \cup I_{z}\right) \leq \frac{3}{2} m(I)
$$

which gives $\alpha<3 / 4$, a contradiction. Thus no such z exists, i.e. $J \subset F-F \subset E-E$.
(I) We need to verify countable additivity. Suppose E_{1}, E_{2}, \ldots are disjoint. By subadditivity of outer measures we have $\mu^{*}\left(\cup_{n=1}^{\infty} E_{n}\right) \leq \sum_{n=1}^{\infty} \mu^{*}\left(E_{n}\right)$. By monotonicity and finite additivity, for all N we have

$$
\mu^{*}\left(\cup_{n=1}^{\infty} E_{n}\right) \geq \mu^{*}\left(\cup_{n=1}^{N} E_{n}\right) \geq \sum_{n=1}^{N} \mu^{*}\left(E_{n}\right)
$$

Letting $N \rightarrow \infty$ shows that $\mu^{*}\left(\cup_{n=1}^{\infty} E_{n}\right) \geq \sum_{n=1}^{\infty} \mu^{*}\left(E_{n}\right)$, so we have equality, i.e. countable additivity.
(II) Let $E_{N}=E \cap[-N, N]$. We will show that $m\left(\left\{x^{2}: x \in E_{N}\right\}\right)=0$ for all N, which is sufficient since $\left\{x^{2}: x \in E\right\}=\cup_{N=1}^{\infty}\left\{x^{2}: x \in E_{N}\right\}$. For an interval $(a, b) \subset[0, N+1]$, we have $m\left(\left\{x^{2}: x \in(a, b)\right\}\right)=b^{2}-a^{2}=(b+a)(b-a) \leq 2(N+1) m((a, b))$. It is easily checked that similarly,

$$
m\left(\left\{x^{2}: x \in(a, b)\right\}\right) \leq 2(N+1) m((a, b))
$$

for all $(a, b) \subset[-N-1, N+1]$. Let $\epsilon>0$. Now

$$
0=m\left(E_{N}\right)=\inf \left\{\sum_{j=1}^{\infty} m\left(\left(a_{j}, b_{j}\right)\right): E_{N} \subset \cup_{j=1}^{\infty}\left(a_{j}, b_{j}\right)\right\}
$$

and we can restrict the infimum to intervals contained in $[-N-1, N+1]$, there exist intervals $\left(a_{j}, b_{j}\right) \subset[-N-1, N+1]$ with $E_{N} \subset \cup_{j=1}^{\infty}\left(a_{j}, b_{j}\right)$ and $\sum_{j=1}^{\infty} m\left(\left(a_{j}, b_{j}\right)\right)<\epsilon / 2(N+1)$. Then

$$
m\left(\left\{x^{2}: x \in E_{N}\right\}\right) \leq \sum_{j=1}^{\infty} m\left(\left\{x^{2}: x \in\left(a_{j}, b_{j}\right)\right) \leq 2(N+1) \sum_{j=1}^{\infty} m\left(\left(a_{j}, b_{j}\right)\right)<\epsilon\right.
$$

and ϵ is arbitrary, so $m\left(\left\{x^{2}: x \in E_{N}\right\}\right)=0$.
(III)(a) Let $G=\cup_{\alpha \in A} N_{\alpha}$ be a union of open null sets. Let us refer to a ball (i.e. interval) with rational center and radius as a rational ball. There are only countably many rational balls in \mathbb{R}. If a rational ball is contained in at least one N_{α}, let us call it an included rational ball. For each included rational ball B, we can pick a particular index $\alpha(B)$ such that $B \subset N_{\alpha(B)}$ (by the Axiom of Choice.)

For each $x \in G$ there is an included rational ball B_{x} with $x \in B_{x} \subset N_{\alpha\left(B_{x}\right)}$. It follows that G is actually the countable union $G=\cup_{B} N_{\alpha(B)}$, where the union is over all included rational balls. Therefore G is null.
(b) Suppose $F\left(x^{\prime}\right)=F\left(x^{\prime \prime}\right)$ for some $x^{\prime}<x<x^{\prime \prime}$. Then $\mu\left(\left(x^{\prime}, x^{\prime \prime}\right)\right) \leq F\left(x^{\prime \prime}\right)-F\left(x^{\prime}\right)=0$ so x is contained in the open null set $\left(x^{\prime}, x^{\prime \prime}\right)$, so $x \notin \operatorname{Supp}(\mu)$. Conversely suppose $x \notin \operatorname{Supp}(\mu)$. Then there is a null open set N containing x; this open set contains an interval $\left(x^{\prime}, y\right) \ni x$ and for every $x^{\prime \prime} \in(x, y)$ we have $F\left(x^{\prime \prime}\right)-F\left(x^{\prime}\right)=\mu\left(\left(x^{\prime}, x^{\prime \prime}\right]\right) \leq \mu\left(\left(x^{\prime}, y\right)\right) \leq \mu(N)=0$.
(IV) For $n=2$ it is an equality (see Ch. $1 \# 9$): $\mu\left(A_{1} \cup A_{2}\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)-\mu\left(A_{1} \cap A_{2}\right)$. Using induction, suppose that for some $k \geq 2$ the inquality is valid whenever $n \leq k$, and consider measurable sets A_{1}, \ldots, A_{k+1}. Using the cases $n=2$ and $n=k$ we have

$$
\begin{aligned}
\mu\left(\cup_{i=1}^{k+1} A_{i}\right) & =\mu\left(\cup_{i=1}^{k} A_{i}\right)+\mu\left(A_{k+1}\right)-\mu\left(\left(\cup_{i=1}^{k} A_{i}\right) \cap A_{k+1}\right) \\
& \geq \sum_{i=1}^{k} \mu\left(A_{i}\right)-\sum_{1 \leq i<j \leq k} \mu\left(A_{i} \cap A_{j}\right)+\mu\left(A_{k+1}\right)-\mu\left(\cup_{i=1}^{k}\left(A_{i} \cap A_{k+1}\right)\right) \\
& \geq \sum_{i=1}^{k+1} \mu\left(A_{i}\right)-\sum_{1 \leq i<j \leq k} \mu\left(A_{i} \cap A_{j}\right)-\sum_{i=1}^{k} \mu\left(A_{i} \cap A_{k+1}\right) \\
& =\sum_{i=1}^{k+1} \mu\left(A_{i}\right)-\sum_{1 \leq i<j \leq k+1} \mu\left(A_{i} \cap A_{j}\right)
\end{aligned}
$$

so the desired inequality is also valid for $n=k+1$. Thus it is valid for all n.

