MATH 525a ASSIGNMENT 3 SOLUTIONS FALL 2016 Prof. Alexander

Chapter 1

(18)(a) By the definition of μ^* , there exist $\{A_j, j \geq 1\}$ with $A_j \in \mathcal{A}, E \subset \bigcup_1^\infty A_j$, and $\sum_{j=1}^\infty \mu(A_j) \leq \mu^*(E) + \epsilon$. Let $A = \bigcup_1^\infty A_j$. Then $A \in \mathcal{A}_\sigma, E \subset A$ and $\mu^*(A) \leq \sum_1^\infty \mu^*(A_j) = \sum_1^\infty \mu(A_j) \leq \mu^*(E) + \epsilon$.

(b) Suppose first that E is μ^* -measurable. By (a), for each $n \ge 1$ there exists $B_n \in \mathcal{A}_{\sigma}$ with $E \subset B_n, \mu^*(B_n) \le \mu^*(E) + 1/n$. Let $B = \bigcap_n B_n$. Then $E \subset B$ and $B \in \mathcal{A}_{\sigma\delta}$ and $\mu^*(E) \le \mu^*(B) \le \mu^*(B_n) \le \mu^*(E) + 1/n$ for all n, so $\mu^*(E) = \mu^*(B)$. Since E is μ^* measurable, we have $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \setminus E) = \mu^*(E) + \mu^*(B \setminus E) = \mu^*(B) + \mu^*(B \setminus E)$, so $\mu^*(B \setminus E) = 0$.

Conversely suppose there exists $B \in \mathcal{A}_{\sigma\delta}$ with $\mu^*(B \setminus E) = 0$. By the preceding paragraph (applied to $B \setminus E$ in place of E), there exists $N \in \mathcal{A}_{\sigma\delta}$ with $B \setminus E \subset N$ and $\mu^*(N) = 0$. Since $N \in \mathcal{A}_{\sigma\delta}$ and the μ^* -measurable sets form a σ -algebra, we can conclude that N is μ^* measurable. Since μ^* is a complete measure on the σ -algebra {all μ^* -measurable sets}, this shows that $B \setminus E$ is μ^* -measurable. Hence $E^c = B^c \cup (B \setminus E)$ is a union of two μ^* -measurable sets so is μ^* -measurable, and therefore E is μ^* -measurable as well.

(26) Let $E \in \mathcal{M}_{\mu}$ with $\mu(E) < \infty$, and $\epsilon > 0$. By Theorem 1.18, there is an open $U \supset E$ with $\mu(U \setminus E) < \epsilon/2$. Since U is open in \mathbb{R} , U is a finite or countable union of disjoint open intervals: $U = \bigcup_{j} I_{j}$. If this is a finite union, we are done, so suppose it is infinite. There exists n such that for $A = \bigcup_{j=1}^{n} I_{j}$,

$$\mu(A) = \sum_{j=1}^{n} \mu(I_j) > \left(\sum_{j=1}^{\infty} \mu(I_j)\right) - \frac{\epsilon}{2} = \mu(U) - \frac{\epsilon}{2}.$$

Therefore $\mu(E \triangle A) = \mu(E \setminus A) + \mu(A \setminus E) \le \mu(U \setminus A) + \mu(U \setminus E) < \epsilon/2 + \epsilon/2 = \epsilon.$

(28) Let $a_n < a$ with $a_n \nearrow a$. Then by continuity from above, $\mu_F(\{a\}) = \mu_F(\cap_n(a_n, a]) = \lim_n \mu_F((a_n, a]) = \lim_n (F(a) - F(a_n)) = F(a) - F(a-)$.

Then using this result we get $\mu_F([a,b)) = \mu_F((a,b]) + \mu_F(\{a\}) - \mu_F(\{b\}) = F(b) - F(a) + F(a) - F(a-) - (F(b) - F(b-)) = F(b-) - F(a-).$

Similarly, $\mu_F([a, b]) = \mu_F((a, b]) + \mu_F(\{a\}) = F(b) - F(a) + F(a) - F(a) = F(b) - F(a),$ and $\mu_F((a, b)) = \mu_F((a, b]) - \mu_F(\{b\}) = F(b) - F(a) - F(b) + F(b) = F(b) - F(a).$

(30) Let $E \in \mathcal{L}$ with m(E) > 0 and let $\alpha \in (0, 1)$. By Theorem 1.18, there is an open $U \supset E$ with $m(U) < m(E)/\alpha$. Since U is open in \mathbb{R} , U is a finite or countable union of disjoint

open intervals: $U = \bigcup_j I_j$. Therefore

$$\sum_{j} m(E \cap I_j) = m(E) > \alpha m(U) = \alpha \sum_{j} m(I_j).$$

This means there must exist at least one j with $m(E \cap I_j) > \alpha m(I_j)$, so we can take $I = I_j$.

(31) Let $E \in \mathcal{L}$ with m(E) > 0, and let $\alpha \in (3/4, 1)$. By #30 there exists an interval I with $m(E \cap I) > \alpha m(I)$. Let $J = (-\frac{1}{2}m(I), \frac{1}{2}m(I))$ and let $F = E \cap I$. Suppose there is a $z \in J$ with $z \notin F - F$. This means that F and its translate $F_z = \{x + z : x \in F\}$ are disjoint. (If there were a $y \in F \cap F_z$, we would have y = x + z for some $x \in F$ and then $z = y - x \in F - F$, a contradiction.) Let $I_z = \{x + z : x \in I\}$. Then $F \cup F_z$ is contained in $I \cup I_z$, which is an interval of length at most $\frac{3}{2}m(I)$, since $|z| < \frac{1}{2}m(I)$. Hence

$$2\alpha m(I) < 2m(F) = m(F \cup F_z) \le m(I \cup I_z) \le \frac{3}{2}m(I),$$

which gives $\alpha < 3/4$, a contradiction. Thus no such z exists, i.e. $J \subset F - F \subset E - E$.

(I) We need to verify countable additivity. Suppose E_1, E_2, \ldots are disjoint. By subadditivity of outer measures we have $\mu^*(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} \mu^*(E_n)$. By monotonicity and finite additivity, for all N we have

$$\mu^*(\bigcup_{n=1}^{\infty} E_n) \ge \mu^*(\bigcup_{n=1}^N E_n) \ge \sum_{n=1}^N \mu^*(E_n).$$

Letting $N \to \infty$ shows that $\mu^*(\bigcup_{n=1}^{\infty} E_n) \ge \sum_{n=1}^{\infty} \mu^*(E_n)$, so we have equality, i.e. countable additivity.

(II) Let $E_N = E \cap [-N, N]$. We will show that $m(\{x^2 : x \in E_N\}) = 0$ for all N, which is sufficient since $\{x^2 : x \in E\} = \bigcup_{N=1}^{\infty} \{x^2 : x \in E_N\}$. For an interval $(a, b) \subset [0, N+1]$, we have $m(\{x^2 : x \in (a, b)\}) = b^2 - a^2 = (b+a)(b-a) \leq 2(N+1)m((a, b))$. It is easily checked that similarly,

$$m(\{x^2 : x \in (a,b)\}) \le 2(N+1)m((a,b))$$

for all $(a, b) \subset [-N - 1, N + 1]$. Let $\epsilon > 0$. Now

$$0 = m(E_N) = \inf\left\{\sum_{j=1}^{\infty} m((a_j, b_j)) : E_N \subset \bigcup_{j=1}^{\infty} (a_j, b_j)\right\}$$

and we can restrict the infimum to intervals contained in [-N-1, N+1], there exist intervals $(a_j, b_j) \subset [-N-1, N+1]$ with $E_N \subset \bigcup_{j=1}^{\infty} (a_j, b_j)$ and $\sum_{j=1}^{\infty} m((a_j, b_j)) < \epsilon/2(N+1)$. Then

$$m(\{x^2 : x \in E_N\}) \le \sum_{j=1}^{\infty} m\left(\{x^2 : x \in (a_j, b_j)\right) \le 2(N+1) \sum_{j=1}^{\infty} m((a_j, b_j)) < \epsilon,$$

and ϵ is arbitrary, so $m(\{x^2 : x \in E_N\}) = 0$.

(III)(a) Let $G = \bigcup_{\alpha \in A} N_{\alpha}$ be a union of open null sets. Let us refer to a ball (i.e. interval) with rational center and radius as a *rational ball*. There are only countably many rational balls in \mathbb{R} . If a rational ball is contained in at least one N_{α} , let us call it an *included rational ball*. For each included rational ball B, we can pick a particular index $\alpha(B)$ such that $B \subset N_{\alpha(B)}$ (by the Axiom of Choice.)

For each $x \in G$ there is an included rational ball B_x with $x \in B_x \subset N_{\alpha(B_x)}$. It follows that G is actually the countable union $G = \bigcup_B N_{\alpha(B)}$, where the union is over all included rational balls. Therefore G is null.

(b) Suppose F(x') = F(x'') for some x' < x < x''. Then $\mu((x', x'')) \le F(x'') - F(x') = 0$ so x is contained in the open null set (x', x''), so $x \notin \text{Supp}(\mu)$. Conversely suppose $x \notin \text{Supp}(\mu)$. Then there is a null open set N containing x; this open set contains an interval $(x', y) \ni x$ and for every $x'' \in (x, y)$ we have $F(x'') - F(x') = \mu((x', x'')) \le \mu((x', y)) \le \mu(N) = 0$.

(IV) For n = 2 it is an equality (see Ch. 1 #9): $\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) - \mu(A_1 \cap A_2)$. Using induction, suppose that for some $k \ge 2$ the inquality is valid whenever $n \le k$, and consider measurable sets A_1, \ldots, A_{k+1} . Using the cases n = 2 and n = k we have

$$\mu \left(\bigcup_{i=1}^{k+1} A_i \right) = \mu \left(\bigcup_{i=1}^{k} A_i \right) + \mu(A_{k+1}) - \mu \left(\left(\bigcup_{i=1}^{k} A_i \right) \cap A_{k+1} \right)$$

$$\geq \sum_{i=1}^{k} \mu(A_i) - \sum_{1 \le i < j \le k} \mu(A_i \cap A_j) + \mu(A_{k+1}) - \mu \left(\bigcup_{i=1}^{k} (A_i \cap A_{k+1}) \right)$$

$$\geq \sum_{i=1}^{k+1} \mu(A_i) - \sum_{1 \le i < j \le k} \mu(A_i \cap A_j) - \sum_{i=1}^{k} \mu(A_i \cap A_{k+1})$$

$$= \sum_{i=1}^{k+1} \mu(A_i) - \sum_{1 \le i < j \le k+1} \mu(A_i \cap A_j),$$

so the desired inequality is also valid for n = k + 1. Thus it is valid for all n.