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Chapter 1

(18)(a) By the definition of µ∗, there exist {Aj, j ≥ 1} with Aj ∈ A, E ⊂ ∪∞1 Aj, and∑∞
j=1 µ(Aj) ≤ µ∗(E) + ε. Let A = ∪∞1 Aj. Then A ∈ Aσ, E ⊂ A and µ∗(A) ≤

∑∞
1 µ∗(Aj) =∑∞

1 µ(Aj) ≤ µ∗(E) + ε.
(b) Suppose first that E is µ∗-measurable. By (a), for each n ≥ 1 there exists Bn ∈ Aσ

with E ⊂ Bn, µ
∗(Bn) ≤ µ∗(E) + 1/n. Let B = ∩nBn. Then E ⊂ B and B ∈ Aσδ

and µ∗(E) ≤ µ∗(B) ≤ µ∗(Bn) ≤ µ∗(E) + 1/n for all n, so µ∗(E) = µ∗(B). Since E is µ∗-
measurable, we have µ∗(B) = µ∗(B∩E)+µ∗(B\E) = µ∗(E)+µ∗(B\E) = µ∗(B)+µ∗(B\E),
so µ∗(B\E) = 0.

Conversely suppose there exists B ∈ Aσδ with µ∗(B\E) = 0. By the preceding para-
graph (applied to B\E in place of E), there exists N ∈ Aσδ with B\E ⊂ N and µ∗(N) = 0.
Since N ∈ Aσδ and the µ∗-measurable sets form a σ-algebra, we can conclude that N is µ∗-
measurable. Since µ∗ is a complete measure on the σ-algebra {all µ∗-measurable sets}, this
shows that B\E is µ∗-measurable. Hence Ec = Bc ∪ (B\E) is a union of two µ∗-measurable
sets so is µ∗-measurable, and therefore E is µ∗-measurable as well.

(26) Let E ∈ Mµ with µ(E) < ∞, and ε > 0. By Theorem 1.18, there is an open U ⊃ E
with µ(U\E) < ε/2. Since U is open in R, U is a finite or countable union of disjoint open
intervals: U = ∪jIj. If this is a finite union, we are done, so suppose it is infinite. There
exists n such that for A = ∪nj=1Ij,

µ(A) =
n∑
j=1

µ(Ij) >

(
∞∑
j=1

µ(Ij)

)
− ε

2
= µ(U)− ε

2
.

Therefore µ(E4A) = µ(E\A) + µ(A\E) ≤ µ(U\A) + µ(U\E) < ε/2 + ε/2 = ε.

(28) Let an < a with an ↗ a. Then by continuity from above, µF ({a}) = µF (∩n(an, a]) =
limn µF ((an, a]) = limn(F (a)− F (an)) = F (a)− F (a−).

Then using this result we get µF ([a, b)) = µF ((a, b])+µF ({a})−µF ({b}) = F (b)−F (a)+
F (a)− F (a−)− (F (b)− F (b−)) = F (b−)− F (a−).

Similarly, µF ([a, b]) = µF ((a, b])+µF ({a}) = F (b)−F (a)+F (a)−F (a−) = F (b)−F (a−),
and µF ((a, b)) = µF ((a, b])− µF ({b}) = F (b)− F (a)− F (b) + F (b−) = F (b−)− F (a).

(30) Let E ∈ L with m(E) > 0 and let α ∈ (0, 1). By Theorem 1.18, there is an open U ⊃ E
with m(U) < m(E)/α. Since U is open in R, U is a finite or countable union of disjoint
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open intervals: U = ∪jIj. Therefore∑
j

m(E ∩ Ij) = m(E) > αm(U) = α
∑
j

m(Ij).

This means there must exist at least one j with m(E ∩ Ij) > αm(Ij), so we can take I = Ij.

(31) Let E ∈ L with m(E) > 0, and let α ∈ (3/4, 1). By #30 there exists an interval I
with m(E ∩ I) > αm(I). Let J = (−1

2
m(I), 1

2
m(I)) and let F = E ∩ I. Suppose there is

a z ∈ J with z /∈ F − F . This means that F and its translate Fz = {x + z : x ∈ F} are
disjoint. (If there were a y ∈ F ∩ Fz, we would have y = x + z for some x ∈ F and then
z = y − x ∈ F − F , a contradiction.) Let Iz = {x+ z : x ∈ I}. Then F ∪ Fz is contained in
I ∪ Iz, which is an interval of length at most 3

2
m(I), since |z| < 1

2
m(I). Hence

2αm(I) < 2m(F ) = m(F ∪ Fz) ≤ m(I ∪ Iz) ≤
3

2
m(I),

which gives α < 3/4, a contradiction. Thus no such z exists, i.e. J ⊂ F − F ⊂ E − E.

(I) We need to verify countable additivity. Suppose E1, E2, . . . are disjoint. By subaddi-
tivity of outer measures we have µ∗(∪∞n=1En) ≤

∑∞
n=1 µ

∗(En). By monotonicity and finite
additivity, for all N we have

µ∗(∪∞n=1En) ≥ µ∗(∪Nn=1En) ≥
N∑
n=1

µ∗(En).

Letting N →∞ shows that µ∗(∪∞n=1En) ≥
∑∞

n=1 µ
∗(En), so we have equality, i.e. countable

additivity.

(II) Let EN = E ∩ [−N,N ]. We will show that m({x2 : x ∈ EN}) = 0 for all N , which is
sufficient since {x2 : x ∈ E} = ∪∞N=1{x2 : x ∈ EN}. For an interval (a, b) ⊂ [0, N + 1], we
have m({x2 : x ∈ (a, b)}) = b2− a2 = (b+ a)(b− a) ≤ 2(N + 1)m((a, b)). It is easily checked
that similarly,

m({x2 : x ∈ (a, b)}) ≤ 2(N + 1)m((a, b))

for all (a, b) ⊂ [−N − 1, N + 1]. Let ε > 0. Now

0 = m(EN) = inf

{
∞∑
j=1

m((aj, bj)) : EN ⊂ ∪∞j=1(aj, bj)

}

and we can restrict the infimum to intervals contained in [−N−1, N+1], there exist intervals
(aj, bj) ⊂ [−N − 1, N + 1] with EN ⊂ ∪∞j=1(aj, bj) and

∑∞
j=1m((aj, bj)) < ε/2(N + 1). Then

m({x2 : x ∈ EN}) ≤
∞∑
j=1

m
(
{x2 : x ∈ (aj, bj)

)
≤ 2(N + 1)

∞∑
j=1

m((aj, bj)) < ε,
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and ε is arbitrary, so m({x2 : x ∈ EN}) = 0.

(III)(a) Let G = ∪α∈ANα be a union of open null sets. Let us refer to a ball (i.e. interval) with
rational center and radius as a rational ball. There are only countably many rational balls
in R. If a rational ball is contained in at least one Nα, let us call it an included rational ball.
For each included rational ball B, we can pick a particular index α(B) such that B ⊂ Nα(B)

(by the Axiom of Choice.)
For each x ∈ G there is an included rational ball Bx with x ∈ Bx ⊂ Nα(Bx). It follows

that G is actually the countable union G = ∪BNα(B), where the union is over all included
rational balls. Therefore G is null.

(b) Suppose F (x′) = F (x′′) for some x′ < x < x′′. Then µ((x′, x′′)) ≤ F (x′′)−F (x′) = 0 so
x is contained in the open null set (x′, x′′), so x /∈ Supp(µ). Conversely suppose x /∈ Supp(µ).
Then there is a null open set N containing x; this open set contains an interval (x′, y) 3 x
and for every x′′ ∈ (x, y) we have F (x′′)− F (x′) = µ((x′, x′′]) ≤ µ((x′, y)) ≤ µ(N) = 0.

(IV) For n = 2 it is an equality (see Ch. 1 #9): µ(A1 ∪A2) = µ(A1) + µ(A2)− µ(A1 ∩A2).
Using induction, suppose that for some k ≥ 2 the inquality is valid whenever n ≤ k, and
consider measurable sets A1, . . . , Ak+1. Using the cases n = 2 and n = k we have

µ
(
∪k+1
i=1Ai

)
= µ

(
∪ki=1Ai

)
+ µ(Ak+1)− µ

((
∪ki=1Ai

)
∩ Ak+1

)
≥

k∑
i=1

µ(Ai)−
∑

1≤i<j≤k

µ(Ai ∩ Aj) + µ(Ak+1)− µ
(
∪ki=1 (Ai ∩ Ak+1)

)
≥

k+1∑
i=1

µ(Ai)−
∑

1≤i<j≤k

µ(Ai ∩ Aj)−
k∑
i=1

µ (Ai ∩ Ak+1)

=
k+1∑
i=1

µ(Ai)−
∑

1≤i<j≤k+1

µ(Ai ∩ Aj),

so the desired inequality is also valid for n = k + 1. Thus it is valid for all n.
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