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(5) M = σ(E). Let G = {E ∈ M : E ∈ σ(F) for some countable F ⊂ E}. If E ∈ G then
E ∈ σ(F) ⊂ σ(E) =M for some F ⊂ E . Thus G ⊂M. Let us show G is a σ-algebra.

If E ∈ G then E ∈ σ(F) for some countable F ⊂ E , so Ec ∈ σ(F), so Ec ∈ G. Thus G is
closed under complements.

If E1, E2, ... ∈ G then each En ∈ σ(FN) for some countable Fn ⊂ E . Then ∪mFm is
countable and each En ∈ σ(∪mFm), so ∪nEn ∈ σ(∪mFm), meaning ∪nEn ∈ G. Thus G is
closed under countable unions. It follows that G is a σ-algebra.
G contains E , so G ⊃ σ(E) =M, so G =M.

(6) Claim 1 : µ is a complete measure on M.
Proof: Suppose N ∈ M, A ⊂ N and µ(N) = 0. This means N = E ∪ F with E ∈ M

and F ⊂ N ′ for some N ′ ∈ M with µ(N ′) = 0. Then µ(E) ≤ µ(N) = 0 so E is null, so
E ∪N ′ is null. Thus we can represent A as φ ∪ A with φ ∈ M and A contained in the null
set E ∪N ′ ∈M. This says A ∈M, so µ is complete.

Claim 2 : µ is the only measure on M that extends µ.
Proof : Suppose µ′ is a measure onM that extends µ. Let E∪F ∈M with E ∈M, F ⊂

N where N ∈M is null. Then F = φ ∪ F ∈M, and

µ(E) = µ′(E) ≤ µ′(E ∪ F ) ≤ µ′(E) + µ′(F ) ≤ µ′(E) + µ′(N) = µ(E) + µ(N) = µ(E),

so all of these are equal, meaning µ′(E ∪ F ) = µ(E) = µ(E ∪ F ). Thus µ′ = µ, on M.

(8) The sets Fk = ∩∞n=kEn satisfy F1 ⊂ F2 ⊂ ... so

µ(lim inf
j

Ej) = µ(∪∞k=1Fk) = lim
k
µ(Fk) ≤ lim inf µ(Ek).

The last inequality follows from Fk ⊂ Ek.
Similarly, the sets Gk = ∪∞n=kEn satisfy G1 ⊃ G2 ⊃ ...with µ(G1) <∞, so

µ(lim sup
j

Ej) = µ(∩∞k=1Gk) = lim
k
µ(Gk) ≥ lim supµ(Ek).

The last inequality follows from Gk ⊃ Ek.

(9)
µ(E) + µ(F ) = µ(E\F ) + µ(E ∩ F ) + µ(F\E) + µ(E ∩ F ),

and the first three of the four measurable sets on the right side are disjoint with union E∪F .
Hence the right side is µ(E ∪ F ) + µ(E ∩ F ).
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(12)(a) E ⊂ F ∪ (E4F ), so µ(E) ≤ µ(F ) + µ(E4F ) = µ(F ). Similarly µ(F ) ≤ µ(E), so
µ(E) = µ(F ).

(b)(i) µ(E4E) = µ(φ) = 0 so E ∼ E.
(ii) E4F = F4E so E ∼ F if and only if F ∼ E.
(iii) Suppose µ(E4F ) = µ(F4G) = 0. Then

(E\G) ∩ F ⊂ F\G ⊂ F4G and (E\G) ∩ F c ⊂ E\F ⊂ E4F.

Hence E\G ⊂ (F4G)∪ (E4F ). Similarly, G\E ⊂ (F4G)∪ (E4F ), so E4G ⊂ (F4G)∪
(E4F ), and therefore µ(E4G) ≤ µ(F4G) + µ(E4F ) = 0. Thus E ∼ G.

(c) The last inequality in (b) says ρ(E,G) ≤ ρ(E,F ) + ρ(F,G).

(A) X must be a countable union of sets of finite measure, or equivalently, of finite sets.
This means X must be countable.

(B) Let

E =
⋃
n≥1

[
1

2
+

1

22n
,
1

2
+

1

22n−1

)
.

Note E consists of a collection of intervals which “converge down toward 1/2,” with gaps in
between them. Then 1

2
∈ Ec but there is no interval [1

2
, 1
2

+ ε) contained in Ec. This means
Ec /∈M, so M is not a σ-algebra.

(C) Since E ⊂ F , we have σ(E) ⊂ σ(F). Since σ(F) is the smallest σ-algebra containing F ,
we have σ(F) ⊂ σ(E). Therefore they are equal.

(D) We have µ(φ) = limn µn(φ) = 0. Suppose E1, E2, . . . are disjoint. Since µn(Ej) ≤ µ(Ej),
we have

µ
(
∪∞j=1Ej

)
= lim

n
µn

(
∪∞j=1Ej

)
= lim

n

∞∑
j=1

µn(Ej) ≤
∞∑
j=1

µ(Ej).

In the other direction, for each k ≥ 1 we have

µ
(
∪∞j=1Ej

)
= lim

n
µn

(
∪∞j=1Ej

)
≥ lim

n
µn

(
∪kj=1Ej

)
= lim

n

k∑
j=1

µn(Ej) =
k∑

j=1

µ(Ej).

Since k is arbitrary this means µ
(
∪∞j=1Ej

)
≥
∑∞

j=1 µ(Ej), so we have equality, i.e. countable
additivity holds.
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