MATH 525a ASSIGNMENT 2 SOLUTIONS

FALL 2016
Prof. Alexander
(5) $\mathcal{M}=\sigma(\mathcal{E})$. Let $\mathcal{G}=\{E \in \mathcal{M}: E \in \sigma(\mathcal{F})$ for some countable $\mathcal{F} \subset \mathcal{E}\}$. If $E \in \mathcal{G}$ then $E \in \sigma(\mathcal{F}) \subset \sigma(\mathcal{E})=\mathcal{M}$ for some $\mathcal{F} \subset \mathcal{E}$. Thus $\mathcal{G} \subset \mathcal{M}$. Let us show \mathcal{G} is a σ-algebra.

If $E \in \mathcal{G}$ then $\mathcal{E} \in \sigma(\mathcal{F})$ for some countable $\mathcal{F} \subset \mathcal{E}$, so $E^{c} \in \sigma(\mathcal{F})$, so $E^{c} \in \mathcal{G}$. Thus \mathcal{G} is closed under complements.

If $E_{1}, E_{2}, \ldots \in \mathcal{G}$ then each $E_{n} \in \sigma\left(\mathcal{F}_{N}\right)$ for some countable $\mathcal{F}_{n} \subset \mathcal{E}$. Then $\cup_{m} \mathcal{F}_{m}$ is countable and each $E_{n} \in \sigma\left(\cup_{m} \mathcal{F}_{m}\right)$, so $\cup_{n} E_{n} \in \sigma\left(\cup_{m} \mathcal{F}_{m}\right)$, meaning $\cup_{n} E_{n} \in \mathcal{G}$. Thus \mathcal{G} is closed under countable unions. It follows that \mathcal{G} is a σ-algebra.
\mathcal{G} contains \mathcal{E}, so $\mathcal{G} \supset \sigma(E)=\mathcal{M}$, so $\mathcal{G}=\mathcal{M}$.
(6) Claim $1: \bar{\mu}$ is a complete measure on $\overline{\mathcal{M}}$.

Proof: Suppose $N \in \overline{\mathcal{M}}, A \subset N$ and $\bar{\mu}(N)=0$. This means $N=E \cup F$ with $E \in \mathcal{M}$ and $F \subset N^{\prime}$ for some $N^{\prime} \in \mathcal{M}$ with $\bar{\mu}\left(N^{\prime}\right)=0$. Then $\bar{\mu}(E) \leq \bar{\mu}(N)=0$ so E is null, so $E \cup N^{\prime}$ is null. Thus we can represent A as $\phi \cup A$ with $\phi \in \mathcal{M}$ and A contained in the null set $E \cup N^{\prime} \in \mathcal{M}$. This says $A \in \overline{\mathcal{M}}$, so $\bar{\mu}$ is complete.

Claim 2: $\bar{\mu}$ is the only measure on $\overline{\mathcal{M}}$ that extends μ.
Proof: Suppose μ^{\prime} is a measure on $\overline{\mathcal{M}}$ that extends μ. Let $E \cup F \in \overline{\mathcal{M}}$ with $E \in \mathcal{M}, F \subset$ N where $N \in \mathcal{M}$ is null. Then $F=\phi \cup F \in \overline{\mathcal{M}}$, and

$$
\mu(E)=\mu^{\prime}(E) \leq \mu^{\prime}(E \cup F) \leq \mu^{\prime}(E)+\mu^{\prime}(F) \leq \mu^{\prime}(E)+\mu^{\prime}(N)=\mu(E)+\mu(N)=\mu(E)
$$

so all of these are equal, meaning $\mu^{\prime}(E \cup F)=\mu(E)=\bar{\mu}(E \cup F)$. Thus $\mu^{\prime}=\bar{\mu}$, on \mathcal{M}.
(8) The sets $F_{k}=\cap_{n=k}^{\infty} E_{n}$ satisfy $F_{1} \subset F_{2} \subset \ldots$ so

$$
\mu\left(\lim _{j} \inf E_{j}\right)=\mu\left(\cup_{k=1}^{\infty} F_{k}\right)=\lim _{k} \mu\left(F_{k}\right) \leq \liminf \mu\left(E_{k}\right) .
$$

The last inequality follows from $F_{k} \subset E_{k}$.
Similarly, the sets $G_{k}=\cup_{n=k}^{\infty} E_{n}$ satisfy $G_{1} \supset G_{2} \supset \ldots$ with $\mu\left(G_{1}\right)<\infty$, so

$$
\mu\left(\limsup _{j} E_{j}\right)=\mu\left(\cap_{k=1}^{\infty} G_{k}\right)=\lim _{k} \mu\left(G_{k}\right) \geq \limsup \mu\left(E_{k}\right) .
$$

The last inequality follows from $G_{k} \supset E_{k}$.

$$
\begin{equation*}
\mu(E)+\mu(F)=\mu(E \backslash F)+\mu(E \cap F)+\mu(F \backslash E)+\mu(E \cap F) \tag{9}
\end{equation*}
$$

and the first three of the four measurable sets on the right side are disjoint with union $E \cup F$. Hence the right side is $\mu(E \cup F)+\mu(E \cap F)$.
(12)(a) $E \subset F \cup(E \triangle F)$, so $\mu(E) \leq \mu(F)+\mu(E \triangle F)=\mu(F)$. Similarly $\mu(F) \leq \mu(E)$, so $\mu(E)=\mu(F)$.
(b)(i) $\mu(E \triangle E)=\mu(\phi)=0$ so $E \sim E$.
(ii) $E \triangle F=F \triangle E$ so $E \sim F$ if and only if $F \sim E$.
(iii) Suppose $\mu(E \triangle F)=\mu(F \triangle G)=0$. Then

$$
(E \backslash G) \cap F \subset F \backslash G \subset F \triangle G \quad \text { and } \quad(E \backslash G) \cap F^{c} \subset E \backslash F \subset E \triangle F
$$

Hence $E \backslash G \subset(F \triangle G) \cup(E \triangle F)$. Similarly, $G \backslash E \subset(F \triangle G) \cup(E \triangle F)$, so $E \triangle G \subset(F \triangle G) \cup$ $(E \triangle F)$, and therefore $\mu(E \triangle G) \leq \mu(F \triangle G)+\mu(E \triangle F)=0$. Thus $E \sim G$.
(c) The last inequality in (b) says $\rho(E, G) \leq \rho(E, F)+\rho(F, G)$.
(A) X must be a countable union of sets of finite measure, or equivalently, of finite sets. This means X must be countable.
(B) Let

$$
E=\bigcup_{n \geq 1}\left[\frac{1}{2}+\frac{1}{2^{2 n}}, \frac{1}{2}+\frac{1}{2^{2 n-1}}\right) .
$$

Note E consists of a collection of intervals which "converge down toward $1 / 2$," with gaps in between them. Then $\frac{1}{2} \in E^{c}$ but there is no interval $\left[\frac{1}{2}, \frac{1}{2}+\epsilon\right)$ contained in E^{c}. This means $E^{c} \notin \mathcal{M}$, so \mathcal{M} is not a σ-algebra.
(C) Since $\mathcal{E} \subset \mathcal{F}$, we have $\sigma(\mathcal{E}) \subset \sigma(\mathcal{F})$. Since $\sigma(\mathcal{F})$ is the smallest σ-algebra containing \mathcal{F}, we have $\sigma(\mathcal{F}) \subset \sigma(\mathcal{E})$. Therefore they are equal.
(D) We have $\mu(\phi)=\lim _{n} \mu_{n}(\phi)=0$. Suppose E_{1}, E_{2}, \ldots are disjoint. Since $\mu_{n}\left(E_{j}\right) \leq \mu\left(E_{j}\right)$, we have

$$
\mu\left(\cup_{j=1}^{\infty} E_{j}\right)=\lim _{n} \mu_{n}\left(\cup_{j=1}^{\infty} E_{j}\right)=\lim _{n} \sum_{j=1}^{\infty} \mu_{n}\left(E_{j}\right) \leq \sum_{j=1}^{\infty} \mu\left(E_{j}\right)
$$

In the other direction, for each $k \geq 1$ we have

$$
\mu\left(\cup_{j=1}^{\infty} E_{j}\right)=\lim _{n} \mu_{n}\left(\cup_{j=1}^{\infty} E_{j}\right) \geq \lim _{n} \mu_{n}\left(\cup_{j=1}^{k} E_{j}\right)=\lim _{n} \sum_{j=1}^{k} \mu_{n}\left(E_{j}\right)=\sum_{j=1}^{k} \mu\left(E_{j}\right)
$$

Since k is arbitrary this means $\mu\left(\cup_{j=1}^{\infty} E_{j}\right) \geq \sum_{j=1}^{\infty} \mu\left(E_{j}\right)$, so we have equality, i.e. countable additivity holds.

