MATH 525a ASSIGNMENT 2 SOLUTIONS FALL 2016 Prof. Alexander

(5) $\mathcal{M} = \sigma(\mathcal{E})$. Let $\mathcal{G} = \{E \in \mathcal{M} : E \in \sigma(\mathcal{F}) \text{ for some countable } \mathcal{F} \subset \mathcal{E}\}$. If $E \in \mathcal{G}$ then $E \in \sigma(\mathcal{F}) \subset \sigma(\mathcal{E}) = \mathcal{M}$ for some $\mathcal{F} \subset \mathcal{E}$. Thus $\mathcal{G} \subset \mathcal{M}$. Let us show \mathcal{G} is a σ -algebra.

If $E \in \mathcal{G}$ then $\mathcal{E} \in \sigma(\mathcal{F})$ for some countable $\mathcal{F} \subset \mathcal{E}$, so $E^c \in \sigma(\mathcal{F})$, so $E^c \in \mathcal{G}$. Thus \mathcal{G} is closed under complements.

If $E_1, E_2, \ldots \in \mathcal{G}$ then each $E_n \in \sigma(\mathcal{F}_N)$ for some countable $\mathcal{F}_n \subset \mathcal{E}$. Then $\bigcup_m \mathcal{F}_m$ is countable and each $E_n \in \sigma(\bigcup_m \mathcal{F}_m)$, so $\bigcup_n E_n \in \sigma(\bigcup_m \mathcal{F}_m)$, meaning $\bigcup_n E_n \in \mathcal{G}$. Thus \mathcal{G} is closed under countable unions. It follows that \mathcal{G} is a σ -algebra.

 \mathcal{G} contains \mathcal{E} , so $\mathcal{G} \supset \sigma(E) = \mathcal{M}$, so $\mathcal{G} = \mathcal{M}$.

(6) Claim 1: $\overline{\mu}$ is a complete measure on $\overline{\mathcal{M}}$.

Proof: Suppose $N \in \overline{\mathcal{M}}, A \subset N$ and $\overline{\mu}(N) = 0$. This means $N = E \cup F$ with $E \in \mathcal{M}$ and $F \subset N'$ for some $N' \in \mathcal{M}$ with $\overline{\mu}(N') = 0$. Then $\overline{\mu}(E) \leq \overline{\mu}(N) = 0$ so E is null, so $E \cup N'$ is null. Thus we can represent A as $\phi \cup A$ with $\phi \in \mathcal{M}$ and A contained in the null set $E \cup N' \in \mathcal{M}$. This says $A \in \overline{\mathcal{M}}$, so $\overline{\mu}$ is complete.

Claim 2: $\overline{\mu}$ is the only measure on $\overline{\mathcal{M}}$ that extends μ .

Proof: Suppose μ' is a measure on $\overline{\mathcal{M}}$ that extends μ . Let $E \cup F \in \overline{\mathcal{M}}$ with $E \in \mathcal{M}, F \subset N$ where $N \in \mathcal{M}$ is null. Then $F = \phi \cup F \in \overline{\mathcal{M}}$, and

$$\mu(E) = \mu'(E) \le \mu'(E \cup F) \le \mu'(E) + \mu'(F) \le \mu'(E) + \mu'(N) = \mu(E) + \mu(N) = \mu(E),$$

so all of these are equal, meaning $\mu'(E \cup F) = \mu(E) = \overline{\mu}(E \cup F)$. Thus $\mu' = \overline{\mu}$, on \mathcal{M} .

(8) The sets $F_k = \bigcap_{n=k}^{\infty} E_n$ satisfy $F_1 \subset F_2 \subset \dots$ so

$$\mu(\liminf_{j} E_j) = \mu(\bigcup_{k=1}^{\infty} F_k) = \lim_{k} \mu(F_k) \le \liminf \mu(E_k).$$

The last inequality follows from $F_k \subset E_k$.

Similarly, the sets $G_k = \bigcup_{n=k}^{\infty} E_n$ satisfy $G_1 \supset G_2 \supset \dots$ with $\mu(G_1) < \infty$, so

$$\mu(\limsup_{j} E_j) = \mu(\bigcap_{k=1}^{\infty} G_k) = \lim_{k} \mu(G_k) \ge \limsup_{k} \mu(E_k).$$

The last inequality follows from $G_k \supset E_k$.

(9)

$$\mu(E) + \mu(F) = \mu(E \setminus F) + \mu(E \cap F) + \mu(F \setminus E) + \mu(E \cap F),$$

and the first three of the four measurable sets on the right side are disjoint with union $E \cup F$. Hence the right side is $\mu(E \cup F) + \mu(E \cap F)$. (12)(a) $E \subset F \cup (E \triangle F)$, so $\mu(E) \leq \mu(F) + \mu(E \triangle F) = \mu(F)$. Similarly $\mu(F) \leq \mu(E)$, so $\mu(E) = \mu(F)$. (b)(i) $\mu(E \triangle E) = \mu(\phi) = 0$ so $E \sim E$. (ii) $E \triangle F = F \triangle E$ so $E \sim F$ if and only if $F \sim E$. (iii) Suppose $\mu(E \triangle F) = \mu(F \triangle G) = 0$. Then

$$(E \setminus G) \cap F \subset F \setminus G \subset F \triangle G$$
 and $(E \setminus G) \cap F^c \subset E \setminus F \subset E \triangle F$.

Hence $E \setminus G \subset (F \triangle G) \cup (E \triangle F)$. Similarly, $G \setminus E \subset (F \triangle G) \cup (E \triangle F)$, so $E \triangle G \subset (F \triangle G) \cup (E \triangle F)$, and therefore $\mu(E \triangle G) \leq \mu(F \triangle G) + \mu(E \triangle F) = 0$. Thus $E \sim G$.

(c) The last inequality in (b) says $\rho(E,G) \leq \rho(E,F) + \rho(F,G)$.

(A) X must be a countable union of sets of finite measure, or equivalently, of finite sets. This means X must be countable.

(B) Let

$$E = \bigcup_{n \ge 1} \left[\frac{1}{2} + \frac{1}{2^{2n}}, \frac{1}{2} + \frac{1}{2^{2n-1}} \right).$$

Note E consists of a collection of intervals which "converge down toward 1/2," with gaps in between them. Then $\frac{1}{2} \in E^c$ but there is no interval $[\frac{1}{2}, \frac{1}{2} + \epsilon)$ contained in E^c . This means $E^c \notin \mathcal{M}$, so \mathcal{M} is not a σ -algebra.

(C) Since $\mathcal{E} \subset \mathcal{F}$, we have $\sigma(\mathcal{E}) \subset \sigma(\mathcal{F})$. Since $\sigma(\mathcal{F})$ is the smallest σ -algebra containing \mathcal{F} , we have $\sigma(\mathcal{F}) \subset \sigma(\mathcal{E})$. Therefore they are equal.

(D) We have $\mu(\phi) = \lim_{n \to \infty} \mu_n(\phi) = 0$. Suppose E_1, E_2, \ldots are disjoint. Since $\mu_n(E_j) \le \mu(E_j)$, we have

$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \lim_n \mu_n\left(\bigcup_{j=1}^{\infty} E_j\right) = \lim_n \sum_{j=1}^{\infty} \mu_n(E_j) \le \sum_{j=1}^{\infty} \mu(E_j).$$

In the other direction, for each $k \ge 1$ we have

$$\mu\left(\cup_{j=1}^{\infty} E_{j}\right) = \lim_{n} \mu_{n}\left(\cup_{j=1}^{\infty} E_{j}\right) \ge \lim_{n} \mu_{n}\left(\cup_{j=1}^{k} E_{j}\right) = \lim_{n} \sum_{j=1}^{k} \mu_{n}(E_{j}) = \sum_{j=1}^{k} \mu(E_{j}).$$

Since k is arbitrary this means $\mu\left(\bigcup_{j=1}^{\infty} E_j\right) \geq \sum_{j=1}^{\infty} \mu(E_j)$, so we have equality, i.e. countable additivity holds.