MATH 525a ASSIGNMENT 1 FALL 2016 Prof. Alexander

Due Friday September 2. Most of these have fairly short answers!

Notation: A^B denotes the set of all mappings from B into A. If A has cardinality j and B has cardinality k then this is sometimes written as j^B or j^k . For example $2^{\mathbb{N}} = \{\text{all maps from } \mathbb{N} \text{ into } \{0,1\}\}$, or equivalently, all sequences of 0's and 1's.

- (1) Let \aleph_0 (Hebrew letter aleph) denote the cardinality of $\mathbb{N} = \{1, 2, ...\}$ and let c denote the cardinality of \mathbb{R} .
- (a) Show that $2^{\aleph_0} = c^{\aleph_0}$. That is, {all sequences of 0's and 1's} and {all sequences of reals} have the same cardinality. HINT: the set of all binary sequences (i.e. sequences of 0's and 1's) has cardinality c. (Why?)
- (b) Since $2 < 3 < \aleph_0 < c$, it follows from (a) that $3^{\aleph_0} = (\aleph_0)^{\aleph_0}$. Construct an explicit injection of $\mathbb{N}^{\mathbb{N}}$ into $3^{\mathbb{N}}$. HINT: Use binary representations of elements of \mathbb{N} .
- (2) In the proof of (0.9) in the text (page 7), there is a statement, "any attempt to answer the question is $x_0 \in Y$?" quickly leads to an absurdity." Fill in the details of this statement.
- (3) Find a poset X which has a unique minimal element, but no element x for which $x \leq y$ for every $y \in X$. HINT: Try a subset of the unit square.
- (4) Let X be a well-ordered set. A function f from X to a well-ordered set Y is called successor-preserving if for all x, f(x) is the least element of Y not in $\{f(z): z < x\}$. A segment in Y is a set of form $\{u \in Y: u < y\}$ for some $y \in Y$.
 - (a) Show there is at most one successor-preserving mapping for any choice of X, Y.
 - (b) Show that the range of f is a segment, or all of Y.
- (5) Let X and Y be well-ordered sets with minimal elements x_0 and y_0 respectively. The successor of an element $x \in X$ is the least element not in $\{z : z \leq x\}$ (which exists, by well-ordering.) Let us call a function $f: X \to Y$ weakly successor-preserving if $f(x_0) = y_0$ and for every x with successor x', the successor of f(x) is f(x'). Find an example of a weakly successor-preserving f which is not successor-preserving. HINT: One kind of well-ordered set is as follows: take two sequences $\{a_n\}$ and $\{b_n\}$ and concatenate them, that is, put them in the order $a_1, a_2, \ldots b_1, b_2, \ldots$, meaning $a_i \leq b_j$ for all i, j. You can do similarly with more than 2 sequences.
- (6) Suppose X, Y and Z are sets with $\operatorname{card}(X) < \operatorname{card}(Y)$ and $\operatorname{card}(Y) \leq \operatorname{card}(Z)$. Show that $\operatorname{card}(X) < \operatorname{card}(Z)$.
- (7) Suppose X is infinite and Y is at most countable. Show there exists a bijection between $X \cup Y$ and X. HINT: For a certain type of infinite X, this is straightforward. Use this to handle the general case. Note we don't assume X, Y disjoint.