MATH 425a
 SAMPLE MIDTERM EXAM 2 SOLUTIONS
 Fall 2016
 Prof. Alexander

(1)(a) $\sum_{n} a_{n}$ converges if the sequence of partial sums $s_{n}=\sum_{i=1}^{n} a_{i}$ converges to a finite limit.
(b) See text.
(2)(a) Yes. If x is irrational then there is a sequence of rationals $x_{n} \rightarrow x$. Since f is continuous we have $f\left(x_{n}\right) \rightarrow f(x)$. But $f\left(x_{n}\right)=0$ for all n so $f(x)=0$, and this is valid for all irrational x.
(b) No. The Ratio Test establishes absolute convergence, so all rearrangements have limit s.
(3)(a) Compare to (constant) $/ n^{2}$: there exists N such that

$$
n \geq N \Longrightarrow 2<\frac{n^{3}}{2} \Longrightarrow n^{3}-2>\frac{n^{3}}{2} \Longrightarrow \frac{n}{n^{3}-2}<\frac{n}{n^{3} / 2}=\frac{2}{n^{2}}
$$

Since $\sum_{n} 2 / n^{2}$ converges, it follows from the Comparison Test that $\sum_{n} n /\left(n^{3}-2\right)$ converges.
(b) Cauchy condensation test: terms are nonnegative and decreasing, and

$$
\sum_{k} 2^{k} 2^{-\sqrt{\log _{2} 2^{k}}}=\sum_{k} 2^{k} 2^{-\sqrt{k}}
$$

This series diverges since terms do not $\rightarrow 0$. Therefore the original series diverges.
(c) Diverges since terms $\nrightarrow 0$.
(d)

$$
\left(n^{2}\left(\frac{2}{n}\right)^{n}\right)^{1 / n}=n^{2 / n} \cdot \frac{2}{n} \rightarrow 1 \cdot 0=0
$$

so the radius of convergence is ∞.
(e) There exists N such that

$$
n \geq N \Longrightarrow \frac{a_{n}}{n}<1 \Longrightarrow \frac{1}{a_{n}}>\frac{1}{n}
$$

Since $\sum_{n} 1 / n$ diverges, the Comparison Test says $\sum_{n} 1 / a_{n}$ diverges.
(4)(a) Since f is uniformly continuous, given $\epsilon>0$ there exists $\delta>0$ such that $\left|p-p^{\prime}\right|<$ $\delta \Longrightarrow\left|g(p)-g\left(p^{\prime}\right)\right|<\epsilon$. Since $\left\{p_{n}\right\}$ is Cauchy, there exists N such that

$$
m, n \geq N \Longrightarrow\left|p_{m}-p_{n}\right|<\delta \Longrightarrow\left|g\left(p_{m}\right)-g\left(p_{n}\right)\right|<\epsilon
$$

This shows $\left\{g\left(p_{n}\right\}\right.$ is Cauchy.
(b) Let $\epsilon>0$ and let δ be as in part (a). Then there exists N_{1}, N_{2} such that

$$
n \geq N_{1} \Longrightarrow\left|p_{n}\right|<\frac{\delta}{2} \quad \text { and } \quad n \geq N_{2} \Longrightarrow\left|t_{n}\right|<\frac{\delta}{2},
$$

so

$$
n \geq \max \left(N_{1}, N_{2}\right) \Longrightarrow\left|p_{n}-t_{n}\right|<\left|p_{n}\right|+\left|t_{n}\right|<\delta \Longrightarrow\left|g\left(p_{n}\right)-g\left(t_{n}\right)\right|<\epsilon .
$$

(c) Since Cauchy sequences in \mathbb{R} are convergent, by part (a) there exists q such that $g\left(p_{n}\right) \rightarrow q$. If any other sequence $t_{n} \rightarrow 0$ then by part (b),

$$
\left|g\left(t_{n}\right)-q\right| \leq\left|g\left(t_{n}\right)-g\left(p_{n}\right)\right|+\left|g\left(p_{n}\right)-q\right| \rightarrow 0,
$$

so $g\left(t_{n}\right) \rightarrow q$ also. By the hint, this means $\lim _{x \rightarrow 0} g(x)=q$.

