MATH 425a

SAMPLE MIDTERM EXAM 1 SOLUTIONS
 Fall 2016
 Prof. Alexander

(1)(a) (See text)
(b) No. Every open interval in \mathbb{R} contains rationals, which are not in I, in particular this is true for every neighborhood $(\sqrt{2}-r, \sqrt{2}+r)$.
(2)(a) An open cover of E is a collection $\left\{G_{\alpha}, \alpha \in A\right\}$ of open sets such that $E \subset \cup_{\alpha \in A} G_{\alpha}$.
(b) $\left\{N_{1 / 2}(x): x \in \mathbb{Z}\right\}$ is one example. Each $N_{1 / 2}(x)$ contains only one integer (x itself) so a finite subcollection of some size n can only cover n integers, so it can't cover all of \mathbb{Z}.
(c) SOLUTION 1: $\left\{N_{x}: x \in F\right\}$ is an open cover of F since each $x \in N_{x}$. If $\left\{N_{x_{1}}, \ldots, N_{x_{m}}\right\}$ is any finite subcollection then the only points of F in $N_{x_{1}} \cup \cdots \cup N_{x_{m}}$ are x_{1}, \ldots, x_{m}, which is not all of F (since F is infinite.) Thus $\left\{N_{x_{1}}, \ldots, N_{x_{m}}\right\}$ is not a finite subcover. Since no finite subcover exists, F is not compact.

SOLUTION 2: No point x of F is a limit point of F, since the neighborhood N_{x} contains no other point of F besides x. Therefore F is an infinite subset of itself, which has no limit point in F. By Theorem 2.37, F is not compact.
(3)(a) Each point x is in either E or E^{c}.

If $x \in E$, then $x \in \bar{E}$. Also $x \notin E^{c}$, so by the assumption, every neighborhood of x contains a point of E^{c} other than x, which means $x \in\left(E^{c}\right)^{\prime}$ so $x \in \overline{E^{c}}$. Thus $x \in \bar{E} \cap \overline{E^{c}}=\partial E$.

If instead $x \in E^{c}$ then the same proof with E and E^{c} switched shows that $x \in \bar{E} \cap \overline{E^{c}}=$ ∂E.
(b) If $x \in \partial E$ then every neighborhood of x contains a point of E and a point of E^{c}.
(c) Let $x \in \partial E$ and let $N_{r}(x)$ be a neighborhood of x.

If $x \in E$, then we have $x \in \overline{E^{c}}$ but $x \notin E^{c}$, so x must be a limit point of E^{c}. Therefore $N_{r}(x)$ contains a point of E^{c}, and it also contains the point $x \in E$.

If instead $x \in E^{c}$ then the same proof with E and E^{c} switched shows that $N_{r}(x)$ contains a point of E and a point of E^{c}.
(4)(a) For $a \in A$ let $N(a)$ be the first index n with $\alpha_{n}=a$. If $a \neq a^{\prime} \in A$ and $N(a)=n$, then $\alpha_{n}=a \neq a^{\prime}$ so $N\left(a^{\prime}\right) \neq n$. This shows $N($.$) is one-to-one on A$, so it is a bijection with its range $N(A) \subset \mathbb{N}$.
(b) Since $N(A) \subset \mathbb{N}$, it is at most countable. There is a bijection from A to $N(A)$, so A is at most countable. Since A is infinite, it must be countable.

