MATH 425a SAMPLE MIDTERM EXAM 1 Fall 2016 Prof. Alexander

You will be asked to prove one or more of the following theorems on the exam:

1.33cde, 2.12, 2.20, 2.24, 2.27a, 2.34, 2.35.

Your proof does not have to be the same as what's in the text, just a correct proof (but don't cite a theorem in your proof that appears in the text AFTER the theorem you're proving.)

- (1)(a) Prove Theorem 2.19: every neighborhood $N_r(p)$ is an open set. (NOTE: In the semester when this sample midterm was given, 2.19 was on the list of theorems to know.)
- (b) Direct from the definition: Is $\sqrt{2}$ an interior point of the set I of all irrational numbers, in the metric space \mathbb{R} ? Why or why not? (No formal proof necessary–just a brief statement.)
- (2)(a) Define open cover (of a set E.)
- (b) In \mathbb{R} , give an example of an open cover of \mathbb{Z} with no finite subcover. You don't need a formal proof, but say how you know it has no finite subcover.
- (c) Suppose F is an infinite set in a metric space, and every $x \in F$ has a neighborhood N_x containing no other point of F (besides x.) Show that F is not compact.
- (3) The boundary of a set E, denoted ∂E , is $\partial E = \overline{E} \cap \overline{E^c}$.
- (a) Show that if every neighborhood of x contains a point of E and a point of E^c , then $x \in \partial E$. (These point of E and/or E^c might be x itself.)
 - (b) State the converse of part (a).
 - (c) Slightly harder problem. Prove the converse of part (a).
- (4) Suppose A is an infinite set, and there is a sequence $\alpha_1, \alpha_2, \ldots$ which contains each element of A at least once.
- (a) Show that there is a bijection from A to a subset of $\mathbb{N} = \{1, 2, 3, \dots\}$. HINT: Consider where an element of A first appears in the sequence $\{\alpha_i\}$.
 - (b) Show that A is countable.