MATH 425a ASSIGNMENT 8 SOLUTIONS

FALL 2015 Prof. Alexander

These solutions are for the individual use of Math 425a students and are not to be distributed outside that group.

Rudin Chapter 4:

(18) We claim that $\lim _{x \rightarrow y} f(x)=0$ for all $y \in \mathbb{R}$. To prove this, fix $y \in \mathbb{R}$ and $\epsilon>0$ and let $N>1 / \epsilon$. Let $E=\left\{\frac{p}{q} \in \mathbb{Q}: 0<\left|\frac{p}{q}-y\right|<1,1 \leq q \leq N\right\}$. (That is, E contains rationals with denominator at most N.) Then E is finite and $y \notin E$, so the closest point to y in E is at a positive distance δ from y. This means that for x with $0<|x-y|<\delta$, we either have $f(x)=0$ (if x is irrational) or $f(x)=1 / n$ with $n>N$ (if x is rational.) Thus we have

$$
0<|x-y|<\delta \Longrightarrow|f(x)|<\frac{1}{N}<\epsilon
$$

This shows that indeed $\lim _{x \rightarrow y} f(x)=0$.
It follows that f is continuous at $y \Longleftrightarrow f(y)=0 \Longleftrightarrow y$ is irrational, and otherwise the discontinuity is simple, since $\lim _{x \rightarrow y} f(x)$ exists.

Handout:

(A) Let $\epsilon>0$. Then there exist δ_{1}, δ_{2} such that
$x, y \in[a, c],|x-y|<\delta_{1} \Longrightarrow|f(x)-f(y)|<\epsilon, \quad x, y \in[c, b],|x-y|<\delta_{2} \Longrightarrow|f(x)-f(y)|<\epsilon$.
If $x \in[a, c], y \in[c, b]$ with $|x-y|<\min \left(\delta_{1}, \delta_{2}\right)$, then $|x-c|<\delta_{1}$ and $|y-c|<\delta_{2}$ so

$$
|f(x)-f(y)| \leq|f(x)-f(c)|+|f(c)-f(y)|<\epsilon+\epsilon=2 \epsilon
$$

Thus $\delta=\min \left(\delta_{1}, \delta_{2}\right)$ "works" (for 2ϵ in place of ϵ) throughout $[a, b]$, so f is uniformly continuous there.
(B)(a) f, g bounded means there exists M such that $|f(x)| \leq M$ and $|g(x)| \leq M$, for all x. Let $\epsilon>0 . f, g$ uniformly continuous means there exists $\delta>0$ such that

$$
|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\epsilon \quad \text { and } \quad|g(x)-g(y)|<\epsilon
$$

Then for $|x-y|<\delta$,

$$
\begin{aligned}
|f(x) g(x)-f(y) g(y)| & =|f(x) g(x)-f(x) g(y)+f(x) g(y)-f(y) g(y)| \\
& \leq|f(x) g(x)-f(x) g(y)|+|f(x) g(y)-f(y) g(y)| \\
& =|f(x)||g(x)-g(y)|+|g(y)||f(x)-f(y)| \\
& \leq M \epsilon+M \epsilon \\
& =2 M \epsilon .
\end{aligned}
$$

This shows that δ "works" for $2 M \epsilon$ in place of ϵ. Since ϵ is arbitrarily small, so is $2 M \epsilon$, so this proves uniform continuity of $f g$.
(b) One example: let $f(x)=g(x)=x$ on $[0, \infty)$. Then given $\epsilon>0$, we have $|x-y|<$ $\epsilon \Longrightarrow|f(x)-f(y)|<\epsilon$, so $\delta=\epsilon$ "works", so f (and also g) is uniformly continuous. To show $(f g)(x)=x^{2}$ is not uniformly continuous, take $\epsilon=1$ and let $\delta>0, x>1 / \delta$ and $y=x+\frac{\delta}{2}$. Then $|y-x|<\delta$ but

$$
|(f g)(y)-(f g)(x)|=\left|y^{2}-x^{2}\right|=x \delta+\frac{\delta^{2}}{4}>x \delta>1=\epsilon
$$

Thus δ does not "work" for all x, y. Since δ is arbitrary, this shows $f g$ is not uniformly continuous.
(C)(a) Let $\epsilon>0$. Since $f(x) \rightarrow L$ as $x \rightarrow \infty$, there exists M such that $x \geq M \Longrightarrow$ $|f(x)-L|<\epsilon / 2$. Therefore

$$
x, y \geq M \Longrightarrow|f(x)-f(y)| \leq|f(x)-L|+|f(y)-L|<2 \cdot \frac{\epsilon}{2}=\epsilon
$$

Since f is continuous and $[0, M+1]$ is compact, f is uniformly continuous on $[0, M+1]$, so there exists $\delta>0$ such that

$$
x, y \in[0, M+1],|y-x|<\delta \Longrightarrow|f(x)-f(y)|<\epsilon
$$

Since any smaller δ also "works," we may assume $\delta<1$. Then whenever $x, y \in[0, \infty)$ with $|x-y|<\delta$, we either have both $x, y \in[0, M+1]$ or both $x, y \in[M, \infty)$, so either way, we have $|f(x)-f(y)|<\epsilon$. This shows f is uniformly continuous.
(b) f is continuous, and $f(x) \rightarrow 0$ as $x \rightarrow \infty$, so f is uniformly continuous by (a).
(D) Since f is continuous, so is $|f|$, by exercise (V) in Assignment 7. Let $\epsilon=\inf _{x \in K}|f(x)|$. Since K is compact, there exists $x \in K$ with $|f(x)|=\epsilon$. Thus either $\epsilon=0$, in which case $f(x)=0$, or $\epsilon>0$, in which case $|f(p)| \geq \epsilon>0$ for all $p \in K$, meaning f is bounded away from 0 .
(E) (a) One example: For $f(x)=1 /\left(1+x^{2}\right)$, we have $f^{-1}([0,1])=\mathbb{R}$ which is not compact.
(b) One example: For $f(x)=e^{x},(-\infty, 0]$ is closed but $f((-\infty, 0])=(0,1]$ is not.
(F) This is false. For example, let $X=[0,2 \pi)$ and $Y=\{z \in \mathbb{C}:|z|=1\}$, and define $f: X \rightarrow Y$ by $f(x)=e^{i x}$. Then f is continuous and a bijection, but if we take $\left\{x_{n}\right\}$ with the odd terms $x_{2 n+1} \nearrow 2 \pi$ and the even terms $x_{2 n} \searrow 0$, then the full sequence $f\left(x_{n}\right) \rightarrow 1$, but the inverse images $\left\{x_{n}\right\}$ do not converge. (This same f was used in lecture to show the inverse of a continuous bijection does not have to be continuous.)
(G)(a) Every point of \mathbb{Z} is isolated, and every function is continuous at each isolated point in its domain, so all $f: \mathbb{Z} \rightarrow Y$ are continuous.
(b) Let $p \in X$ be a limit point of X. Define

$$
f(x)= \begin{cases}1 & \text { if } x \neq p \\ 0 & \text { if } x=p\end{cases}
$$

Then $\lim _{x \rightarrow p} f(x)=1$ but $f(p)=0$, so f is not continuous at p.

