MATH 425a ASSIGNMENT 8 SOLUTIONS
FALL 2015 Prof. Alexander

These solutions are for the individual use of Math 425a students and are not to be distributed
outside that group.

Rudin Chapter 4:

(18) We claim that lim,_,, f(z) = 0 for all y € R. To prove this, fix y € R and € > 0 and
let N>1/e. Let E={2€Q:0<|2—y[<1,1<g< N} (Thatis, E contains rationals
with denominator at most N.) Then FE is finite and y ¢ E, so the closest point to y in E is
at a positive distance ¢ from y. This means that for x with 0 < |z — y| < §, we either have
f(z) =0 (if z is irrational) or f(z) = 1/n with n > N (if x is rational.) Thus we have

1
O0<|z—yl<éd = \f(x)]<ﬁ<e.

This shows that indeed lim,_,, f(z) = 0.
It follows that f is continuous at y <= f(y) =0 <= y is irrational, and otherwise
the discontinuity is simple, since lim,_,, f(z) exists.

Handout:

(A) Let € > 0. Then there exist d;, d2 such that
z,y € [ac] lz—y| <& = [f(@)=fW) <€ wmyelebl|r—yl < = [flx)-f(y)l <e
If x € [a,c],y € [c,b] with |z — y| < min(dq,ds), then |z — ¢| < §; and |y — ¢| < dy so

[f(@) = F) < [f(2) = Fe)l +1f(c) = f(y)] < e+ e=2e

Thus § = min(dy, d2) “works” (for 2e in place of €) throughout [a,b], so f is uniformly con-
tinuous there.

(B)(a) f, g bounded means there exists M such that |f(z)] < M and |g(z)| < M, for all x.

Let € > 0. f, g uniformly continuous means there exists 6 > 0 such that
[z -yl <0 = [f(z) = fly) <e and |g(z) —g(y)] <e

Then for |z —y| < 0,

|f(x)g(x) = fy)gW)| = |f(x)g(x) — f(x)g(y) + f(x)g(y) — f(y)a(y)|
<[f(z)g(x) — f(z)gW)| + |f(x)g(y) — f(¥)g(v)]
=[f(@)| [9(x) = gW)| + lg)| |f(z) — f(y)]
< Me+ Me
=2Me.



This shows that ¢ “works” for 2Me in place of €. Since € is arbitrarily small, so is 2Me, so
this proves uniform continuity of fg.

(b) One example: let f(z) = g(x) = x on [0,00). Then given € > 0, we have |z — y| <
e = |f(z) — f(y)| < € s0od = e “works”, so f (and also g) is uniformly continuous.
To show (fg)(z) = 2? is not uniformly continuous, take ¢ = 1 and let § > 0,z > 1/§ and
y =2+ 3. Then |y — 2| < § but

(F9)W) ~ (F)@)] = Iy % =26+ > > 25> 1= ¢

Thus 0 does not “work” for all x,y. Since ¢ is arbitrary, this shows fg is not uniformly
continuous.

(C)(a) Let € > 0. Since f(z) — L as x — oo, there exists M such that x > M —
|f(xz) — L| < €/2. Therefore

ry>M = |f(@) = f)] < @)~ L+ |f(y) - LI <2-5 =«

Since f is continuous and [0, M + 1] is compact, f is uniformly continuous on [0, M + 1], so
there exists 0 > 0 such that

v,y €0, M+ 1] |y —2[ <6 = [f(x) = fy)] <e

Since any smaller ¢ also “works,” we may assume § < 1. Then whenever z,y € [0, 00) with
|z — y| < 0, we either have both x,y € [0, M + 1] or both z,y € [M, 00), so either way, we
have |f(xz) — f(y)| < e. This shows f is uniformly continuous.

(b) f is continuous, and f(z) — 0 as x — oo, so f is uniformly continuous by (a).

(D) Since f is continuous, so is |f|, by exercise (V) in Assignment 7. Let ¢ = inf,cx |f(2)].
Since K is compact, there exists € K with |f(2)| = e. Thus either ¢ = 0, in which case
f(z) =0, or € > 0, in which case |f(p)| > € > 0 for all p € K, meaning f is bounded away
from 0.

(E)(a) One example: For f(z) =1/(1+ x?), we have f~1([0,1]) = R which is not compact.
(b) One example: For f(x) = e*, (—o0,0] is closed but f((—o0,0]) = (0, 1] is not.

(F) This is false. For example, let X = [0,27) and Y = {z € C : |z|] = 1}, and define
f:X =Y by f(xr) =e”. Then f is continuous and a bijection, but if we take {x,} with
the odd terms x9,,1 /* 27 and the even terms z, N\, 0, then the full sequence f(x,) — 1,
but the inverse images {z,} do not converge. (This same f was used in lecture to show the
inverse of a continuous bijection does not have to be continuous.)

(G)(a) Every point of Z is isolated, and every function is continuous at each isolated point
in its domain, so all f : Z — Y are continuous.



(b) Let p € X be a limit point of X. Define

1 ifx#p,
f(m)_{() if x = p.

Then lim,_,, f(x) = 1 but f(p) =0, so f is not continuous at p.



