MATH 425a ASSIGNMENT 7 SOLUTIONS
 FALL 2016 Prof. Alexander

These solutions are for the individual use of Math 425a students and are not to be distributed outside that group.

Rudin Chapter 3 and 4:

(11)(c) We have

$$
\frac{1}{s_{n-1}}-\frac{1}{s_{n}}=\frac{s_{n}-s_{n-1}}{s_{n} s_{n-1}}=\frac{a_{n}}{s_{n} s_{n-1}} \geq \frac{a_{n}}{s_{n}^{2}}
$$

and

$$
\sum_{n=2}^{N}\left(\frac{1}{s_{n-1}}-\frac{1}{s_{n}}\right)=\frac{1}{s_{1}}-\frac{1}{s_{N}} \rightarrow \frac{1}{s_{1}} \quad \text { as } N \rightarrow \infty
$$

meaning

$$
\sum_{n=2}^{\infty}\left(\frac{1}{s_{n-1}}-\frac{1}{s_{n}}\right)
$$

converges. Therefore $\sum \frac{a_{n}}{s_{n}^{2}}$ converges, by the Comparison Test.
(2) Let $f: X \rightarrow Y$ be continuous, and $E \subset X$. We have $f(\bar{E})=f(E) \cup f\left(E^{\prime}\right)$, and certainly $f(E) \subset \overline{f(E)}$, so we need to show $f\left(E^{\prime}\right) \subset \overline{f(E)}$.

Let $p \in E^{\prime}$; then there exists $p_{n} \rightarrow p$ with $p_{n} \in E$. From 4.2 we have $f\left(p_{n}\right) \rightarrow f(p)$, so either $f(p)$ is a point of $f(E)$ or $f(p)$ is a limit point of $f(E)$. Either way we have $f(p) \in \overline{f(E)}$, and this is true for all $p \in E^{\prime}$, so we have $f\left(E^{\prime}\right) \subset \overline{f(E)}$ as desired.
(4) Let $f: X \rightarrow Y$ be continuous, and let E be dense in X. We want to show that if $y \in f(X)$ then either $y \in f(E)$ or $y \in f(E)^{\prime}$. Suppose $y \in f(X)$ but $y \notin f(E)$. Then $y=f(x)$ for some $x \in E^{c}$. Since E is dense in X, x must be a limit point of E, so there is a sequence $\left\{x_{n}\right\}$ in E with $x_{n} \rightarrow x$. Then since f is continuous, we have $f\left(x_{n}\right) \rightarrow f(x)=y$. Since $f\left(x_{n}\right) \in f(E)$ and $y \notin f(E)$, we must have $f\left(x_{n}\right) \neq y$, so every neighborhood of y contains points $f\left(x_{n}\right) \neq y$ with $f\left(x_{n}\right) \in f(E)$, which shows that $y \in f(E)^{\prime}$.

Thus $y \in f(X)$ implies that either $y \in f(E)$ or $y \in f(E)^{\prime}$, meaning that $f(E)$ is dense in $f(X)$.

Handout:

(I) Since $\sum a_{n}$ converges, its partial sums form a bounded sequence. Therefore we can apply 3.42 with $b_{n}=1 / n$ and obtain that $\sum \frac{a_{n}}{n}=\sum a_{n} b_{n}$ converges.
(II) Given $\epsilon>0$, let $\delta=\min \left(\frac{1}{2}, \frac{\epsilon}{2}\right)$. Then $|x|<\delta \Longrightarrow|1-x|>1 / 2$, so

$$
|x|<\delta \Longrightarrow\left|\frac{x}{1-x}\right|<\frac{\frac{\epsilon}{2}}{\frac{1}{2}}=\epsilon .
$$

This shows $\lim _{x \rightarrow 0} \frac{x}{1-x}=0$.
(III) It is enough to show that for every $p, \lim _{x \rightarrow p} f(x)$ does not exist. Suppose this limit existed for some p, with value L. Let $\epsilon<\frac{1}{2}$. Then there exists $\delta>0$ such that $x \in(p-\delta, p+\delta) \Longrightarrow|f(x)-L|<\epsilon<\frac{1}{2}$. There exist rational values in $(p-\delta, p+\delta)$ where $f(x)=0$, and irrational values where $f(x)=1$, so both $|0-L|<\frac{1}{2}$ and $|1-L|<\frac{1}{2}$. There is no such value L, so we have a contradiction, meaning the limit does not exist.
(IV)(a) True. The series converges, by the Alternating Series Test. It does not converge absolutely, since $\sum_{n} n^{-1}=\infty$. Therefore it converges conditionally. By Theorem 3.54 it has a rerrangement which converges to any given number, in particular to 3.14159.
(b) True. If a series is conditionally convergent, by Theorem 3.54 it has a rearrangement which diverges to $+\infty$. So if a series has no such divergent rearrangement, it must be absolutely convergent.
(c) False. Let $\sum_{n} b_{n}$ be any conditionally convergent series. Then by Theorem 3.54 it has a rearrangement $\sum_{n} a_{n}$ which diverges to $+\infty$. This means $\sum_{n} a_{n}$ is divergent but has a convergent rearrangement $\sum_{n} b_{n}$.
(V)(a) Suppose f is continuous. We need to show that $\lim _{x \rightarrow p}|f(x)|=|f(p)|$, for all p. From Chapter $1 \# 13$ (Assignment 2), we have $||f(x)|-|f(p)|| \leq|f(x)-f(p)|$ so given $\epsilon>0$ there exists $\delta>0$ such that

$$
|x-p|<\delta \Longrightarrow|f(x)-f(p)|<\epsilon \Longrightarrow| | f(x)|-|f(p)||<\epsilon .
$$

This shows that $|f|$ is continuous at p.
(b) No. For example let

$$
f(x)= \begin{cases}-1 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irrational }\end{cases}
$$

As in problem (III), f is not continuous at any p. But $|f(x)| \equiv 1$ so $|f|$ is continuous.
(VI)(a) Let $f(x)=\cos (1 / x), x_{n}=1 / 2 n \pi$ and $t_{n}=1 /(2 n+1) \pi$. Then $f\left(x_{n}\right)=1$ for all n, so $f\left(x_{n}\right) \rightarrow 1$, while $f\left(t_{n}\right) \rightarrow-1$. Since these limits are unequal, it follows from Theorem 4.2 that $\lim _{x \rightarrow 0} f(x)$ does not exist.
(b) For $x \neq 0$ we have $\left|x \sin \frac{1}{x}\right| \leq|x|$. Therefore given $\epsilon>0$, taking $\delta=\epsilon$ we have

$$
0<|x|<\epsilon \Longrightarrow\left|x \sin \frac{1}{x}\right| \leq|x|<\epsilon
$$

This shows that $\lim _{x \rightarrow 0} x \sin (1 / x)=0$.
(VII)(a) Given $\epsilon>0$, if $d(x, p)<\epsilon / 5$ then $d(f(x), q)<\epsilon$. This shows that $\delta=\epsilon / 5$ "works". Thus $\lim _{x \rightarrow p} f(x)=q$.
(b) Let $q>c$, and choose $\epsilon>0$ satisfying $q-\epsilon>c$. If $\lim _{x \rightarrow p} f(x)=q$ then there exists $\delta>0$ such that

$$
x \in E, 0<d(x, p)<\delta \Longrightarrow|f(x)-q|<\epsilon \Longrightarrow f(x)>q-\epsilon>c .
$$

This is not possible since $f(x) \leq c$ for all x, so we cannot have $\lim _{x \rightarrow p} f(x)=q$. This is true for all $q>c$ so $\lim _{x \rightarrow p} f(x) \leq c$.

