MATH 425a ASSIGNMENT 6 SOLUTIONS
 FALL 2016 Prof. Alexander

These solutions are for the individual use of Math 425a students and are not to be distributed outside that group.

Rudin Chapter 3:

(10) Suppose $a_{n} \in \mathbb{Z}$ and $a_{n} \neq 0$ for infinitely many n, say for indices $n_{1}<n_{2}<\ldots$ Then $\left|a_{n_{k}}\right| \geq 1$ for all k, so $\left|a_{n_{k}}\right|^{1 / n_{k}} \geq 1$. The existence of such a subsequence shows that $\limsup \operatorname{sum}_{k \rightarrow \infty}\left|a_{n}\right|^{1 / n} \geq 1$, so $R \leq 1$.
(21) Suppose X is complete and $E_{1} \supset E_{2} \supset \ldots$, with E_{n} nonempty, closed and bounded, satisfying $\operatorname{diam}\left(E_{n}\right) \rightarrow 0$. Let $x_{n} \in E_{n}$. Given $\epsilon>0$, there exists N such that $\operatorname{diam}\left(E_{N}\right)<\epsilon$. Then for $n, m \geq N$ we have $x_{n}, x_{m} \in E_{N}$ so $d\left(x_{n}, x_{m}\right)<\epsilon$. This shows that $\left\{x_{n}\right\}$ is Cauchy; since X is complete we have $x_{n} \rightarrow x$ for some x. For fixed k we have $x_{k}, x_{k+1}, \cdots \in E_{k}$, $x_{k} \rightarrow x$ and E_{k} closed, so $x \in E_{k}$, for all k. Thus $x \in \cap_{k=1}^{\infty} E_{k}$. Now for all n, $\operatorname{diam}\left(\cap_{k=1}^{\infty} E_{k}\right) \leq$ $\operatorname{diam}\left(E_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, so $\operatorname{diam}\left(\cap_{k=1}^{\infty} E_{k}\right)=0$. But this means $\cap_{k=1}^{\infty} E_{k}$ cannot contain more than one point, so this intersection is $\{x\}$.

Handout:

(A) Since $\sum a_{n}$ converges, we have $a_{n} \rightarrow 0$, so there exists N such that $n \geq N \Longrightarrow a_{n}<$ $1 \Longrightarrow a_{n}^{2}<a_{n}$. Therefore $\sum a_{n}^{2}$ converges by the Comparison Test.
(B)(a) Suppose that for some $c>0$ and $\gamma>0$ we know that the inequality

$$
(*) \quad a_{n} \geq c \gamma^{n} .
$$

holds for both n and $n+1$. We would like to show that it then holds for $n+2$. The validity of $(*)$ for n and $n+1$ implies that

$$
a_{n+2}=a_{n+1}+a_{n} \geq c \gamma^{n+1}+c \gamma^{n}
$$

so to conclude that $(*)$ holds for $n+2$ it is sufficient that the right side of this inequality satisfy

$$
c \gamma^{n+1}+c \gamma^{n} \geq c \gamma^{n+2}
$$

We can divide out $c \gamma^{n}$ so this is equivalent to $\gamma+1 \geq \gamma^{2}$. The quadratic formula gives us the roots of $\gamma+1=\gamma^{2}$, and we conclude that $\gamma+1 \geq \gamma^{2}$ is valid for all $1<\gamma \leq(1+\sqrt{5}) / 2$.

For such γ, we have shown that if $(*)$ holds for n and $n+1$, it also holds for $n+2$. To prove by induction that $(*)$ holds for all n, we need to start off the induction by showing it holds for $n=1,2$. This means that we need to show

$$
1=a_{1} \geq c \gamma \quad \text { and } \quad 1=a_{2} \geq c \gamma^{2}
$$

But these are both true provided we choose $c<\min \left(1 / \gamma, 1 / \gamma^{2}\right)$.
Thus for all $1<\gamma \leq(1+\sqrt{5}) / 2$ and $0<c<\min \left(1 / \gamma, 1 / \gamma^{2}\right),(*)$ holds for all n.
(b) By (a) we have $1 / a_{n} \leq 1 / c \gamma^{n}$, and $\sum \frac{1}{c \gamma^{n}}$ converges (geometric series with $1 / \gamma<1$), so by the Comparison Test, $\sum \frac{1}{a_{n}}$ converges.
(c) From (a), taking $\gamma_{0}=(1+\sqrt{5}) / 2$ we have

$$
\begin{equation*}
n^{-1} \log a_{n} \geq n^{-1} \log \left(c \gamma_{0}^{n}\right)=n^{-1}\left(\log c+n \log \gamma_{0}\right)=n^{-1} \log c+\log \gamma_{0} . \tag{1}
\end{equation*}
$$

In the other direction, as in (a), consider the inequality

$$
(* *) \quad a_{n} \leq \gamma_{0}^{n} .
$$

Since $a_{1}=a_{2}=1$, this is true for $n=1,2$. Suppose $(* *)$ is true for some integers $n, n+1$. Since γ_{0} is a root of $\gamma^{2}-\gamma-1$, we have $\gamma_{0}+1=\gamma_{0}^{2}$. Therefore

$$
a_{n+2}=a_{n+1}+a_{n} \leq \gamma_{0}^{n+1}+\gamma_{0}^{n}=\gamma_{0}^{n}\left(\gamma_{0}+1\right)=\gamma_{0}^{n+2}
$$

so ($* *$) holds for $n+2$. Thus by induction, ($* *$) holds for all n, and therefore

$$
n^{-1} \log c+\log \gamma_{0} \leq n^{-1} \log a_{n} \leq n^{-1} \log \left(\gamma_{0}^{n}\right)=\log \gamma_{0} .
$$

It follows that

$$
\left|\log \gamma_{0}-n^{-1} \log a_{n}\right| \leq\left|n^{-1} \log c\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty,
$$

that is, $n^{-1} \log a_{n} \rightarrow \log \gamma_{0}$.
(C) Suppose first that L is finite. Let $\epsilon>0$. There exists N_{1} such that $n \geq N_{1} \Longrightarrow$ $\left|\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}-L\right|<\epsilon$. Hence for $n \geq N_{1}$ we have

$$
\begin{equation*}
\left|a_{n}\right|=\left|a_{N_{1}}\right| \prod_{j=N_{1}}^{n-1} \frac{\left|a_{j+1}\right|}{\left|a_{j}\right|} \leq\left|a_{N_{1}}\right|(L+\epsilon)^{n-N_{1}} \tag{2}
\end{equation*}
$$

so $\left|a_{n}\right|^{1 / n} \leq\left|a_{N_{1}}\right|^{1 / n}(L+\epsilon)^{1-N_{1} / n} \rightarrow L+\epsilon$ as $n \rightarrow \infty$. It follows that limsup $\left|a_{n}\right|^{1 / n} \leq L+\epsilon$ and then since ϵ is arbitrary, $\lim \sup \left|a_{n}\right|^{1 / n} \leq L$.

If $L=0$, this shows $\lim \sup \left|a_{n}\right|^{1 / n}=L$ and we are done. If $L>0$, we can repeat the above reasoning with $0<\epsilon<L$ to obtain that for $n \geq N_{1}$,

$$
\begin{equation*}
\left|a_{n}\right|=\left|a_{N_{1}}\right| \prod_{j=N_{1}}^{n-1} \frac{\left|a_{j+1}\right|}{\left|a_{j}\right|} \geq\left|a_{N_{1}}\right|(L-\epsilon)^{n-N_{1}} . \tag{3}
\end{equation*}
$$

As above it follows that limsup $\left|a_{n}\right|^{1 / n} \geq L-\epsilon$ and then since ϵ is arbitrary, $\lim \sup \left|a_{n}\right|^{1 / n} \geq$ L. Therefore limsup $\left|a_{n}\right|^{1 / n}=L$.

Next suppose $L=+\infty$. Then given $R>0$ there exists N_{2} such that $n \geq N_{2} \Longrightarrow$ $\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}>R$, so as in (3), $\left|a_{n}\right| \geq\left|a_{N_{1}}\right| R^{n-N_{1}}$, and then $\lim \sup \left|a_{n}\right|^{1 / n} \geq R$. Since $R \overline{\text { is arbitrary }}$ this shows limsup $\left|a_{n}\right|^{1 / n}=+\infty$.
(D)(a) $\lim _{n}\left(\frac{1}{n^{2}}\right)^{1 / n}=\lim _{n} \frac{1}{n^{2 / n}}=1$ so $R=1$.
(b) $\lim _{n}\left(\frac{1}{(\log n)^{n}}\right)^{1 / n}=\lim _{n} \frac{1}{\log n}=0$ so $R=\infty$.
(c) $\lim _{n}\left(\frac{n^{4}}{3^{n}}\right)^{1 / n}=\lim _{n} \frac{n^{4 / n}}{3}=\frac{1}{3}$ so $R=3$.
(d) We use (C). We have $\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{(n+1)^{n+1}}{(n+1)!} \frac{n!}{n^{n}}=\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ so $R=1 / e$.
(e) We use (C) again. We have $\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{((n+1)!)^{2}}{(2 n+2)!} \frac{(2 n)!}{(n!)^{2}}=\frac{(n+1)^{2}}{(2 n+1)(2 n+2)}=\frac{(n+1)^{2}}{(2 n+2)^{2}} \frac{2 n+2}{2 n+1}=$ $\frac{1}{4} \frac{2 n+2}{2 n+1} \rightarrow \frac{1}{4}$, so $R=4$.
(E)(a) Since $n-1 \geq n / 2$ for all $n \geq 2$, we have $\frac{1}{n(n-1)} \leq \frac{2}{n^{2}}$. Since $\sum \frac{2}{n^{2}}$ converges, so does $\sum \frac{1}{n(n-1)}$ by the Comparison Test.
(b) Since $n^{2}+1 \leq 2 n^{2}$ for all $n \geq 1$, we have $\sqrt{\frac{6 n}{n^{2}+1}} \geq \sqrt{\frac{6 n}{2 n^{2}}}=\frac{\sqrt{3}}{\sqrt{n}}$. Since $\sum \frac{\sqrt{3}}{\sqrt{n}}$ diverges, so does $\sum \sqrt{\frac{6 n}{n^{2}+1}}$, by the Comparison Test.
(c) Let $q \in(1, p)$. Since $\frac{\log n}{n^{p-q}} \rightarrow 0$, there exists N such that $n \geq N \Longrightarrow \log n \leq$ $n^{p-q} \Longrightarrow \frac{\log n}{n^{p}} \leq \frac{1}{n^{q}}$. Since $q>1$, the series $\sum \frac{1}{n^{q}}$ converges, hence so does $\sum \frac{\log n}{n^{p}}$ by the Comparison Test.
(F)(a) If $s_{2 n} \rightarrow s$ then $s_{2 n+1}=s_{2 n}+a_{2 n+1} \rightarrow s+0=s$ also. Hence given $\epsilon>0$ there exist N_{1}, N_{2} such that

$$
n \geq N_{1}, n \text { even } \Longrightarrow\left|s_{n}-s\right|<\epsilon, \quad n \geq N_{2}, n \text { odd } \Longrightarrow\left|s_{n}-s\right|<\epsilon,
$$

the full sequence $s_{n} \rightarrow s$, that is, the series converges to s. ADD MORE
(b) This is false. For example take $a_{n}=(-1)^{n}$. Then $s_{2 n-1}=-1, s_{2 n}=0$ for all n, so both the subsequences are constant, hence convergent. But the full sequence $\left\{s_{n}\right\}$ does not converge.
(G) We first determine for which n the given term can be compared to a_{n}. In fact we have

$$
\frac{a_{n}^{2 / 5}}{n^{2 / 3}} \leq a_{n} \Longleftrightarrow a_{n} \geq \frac{1}{n^{10 / 9}}
$$

For other n (that is, those with $a_{n}<\frac{1}{n^{10 / 9}}$) we have

$$
\frac{a_{n}^{2 / 5}}{n^{2 / 3}} \leq \frac{1}{n^{4 / 9}} \frac{1}{n^{2 / 3}}=\frac{1}{n^{10 / 9}}
$$

Therefore

$$
\begin{aligned}
\frac{a_{n}^{2 / 5}}{n^{2 / 3}} & \leq \begin{cases}a_{n} & \text { if } a_{n} \geq \frac{1}{n^{10 / 9}}, \\
\frac{1}{n^{10 / 9}} & \text { if } a_{n}<\frac{1}{n^{10 / 9}}\end{cases} \\
& \leq a_{n}+\frac{1}{n^{10 / 9}} \text { for all } n .
\end{aligned}
$$

Since $\sum_{n}\left(a_{n}+n^{-10 / 9}\right)$ converges, so does $\sum_{n} a_{n}^{2 / 5} / n^{2 / 3}$ by the Comparison Test.
(H)(a) First simplify each term algebraically:

$$
\begin{align*}
\sum_{k=1}^{\infty} & \left(\frac{a_{1}}{3 k-2}+\frac{a_{2}}{3 k-1}+\frac{a_{3}}{3 k}-\frac{a_{1}+a_{2}+a_{3}}{3 k}\right) \tag{4}\\
& =\sum_{k=1}^{\infty}\left(a_{1}\left(\frac{1}{3 k-2}-\frac{1}{3 k}\right)+a_{2}\left(\frac{1}{3 k-1}-\frac{1}{3 k}\right)\right) \\
& =\sum_{k=1}^{\infty}\left(\frac{2 a_{1}}{3 k(3 k-2)}+\frac{a_{2}}{3 k(3 k-1)}\right)
\end{align*}
$$

Now compare both terms to (constant) $/ k^{2}$: for all $k \geq 1$ we have

$$
3 k-2 \geq k \quad \text { and } \quad 3 k-1 \geq 2 k
$$

and therefore

$$
\left|\frac{2 a_{1}}{3 k(k-2)}+\frac{a_{2}}{3 k(3 k-1)}\right| \leq \frac{2\left|a_{1}\right|}{3 k(k-2)}+\frac{\left|a_{2}\right|}{3 k(3 k-1)} \leq \frac{2\left|a_{1}\right|}{3 k \cdot k}+\frac{\left|a_{2}\right|}{3 k \cdot 2 k}=\frac{4\left|a_{1}\right|+\left|a_{2}\right|}{6} \frac{1}{k^{2}} .
$$

Since $\sum_{k} C / k^{2}$ converges for any constant C, the convergence of the original series (4) follows from the Comparison Test.
(b) If the series

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\frac{a_{1}}{3 k-2}+\frac{a_{2}}{3 k-1}+\frac{a_{3}}{3 k}\right) \tag{5}
\end{equation*}
$$

converged, we could subtract the convergent series (4) (in part (a)) from it, and as a result the series

$$
\sum_{k=1}^{\infty} \frac{a_{1}+a_{2}+a_{3}}{3 k}
$$

would converge. But this is a nonzero multiple of the harmonic series, so it does not converge. Therefore the series (5) must not converge.
(c) When $a_{1}+a_{2}+a_{3}=0$, the convergent series (4) in part (a) is the same as (5), so (5) converges.

