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Rudin Chapter 3:

(10) Suppose an ∈ Z and an 6= 0 for infinitely many n, say for indices n1 < n2 < . . . .
Then |ank

| ≥ 1 for all k, so |ank
|1/nk ≥ 1. The existence of such a subsequence shows that

lim supk→∞ |an|1/n ≥ 1, so R ≤ 1.

(21) Suppose X is complete and E1 ⊃ E2 ⊃ . . . , with En nonempty, closed and bounded,
satisfying diam(En)→ 0. Let xn ∈ En. Given ε > 0, there exists N such that diam(EN) < ε.
Then for n,m ≥ N we have xn, xm ∈ EN so d(xn, xm) < ε. This shows that {xn} is Cauchy;
since X is complete we have xn → x for some x. For fixed k we have xk, xk+1, · · · ∈ Ek,
xk → x and Ek closed, so x ∈ Ek, for all k. Thus x ∈ ∩∞k=1Ek. Now for all n, diam(∩∞k=1Ek) ≤
diam(En) → 0 as n → ∞, so diam(∩∞k=1Ek) = 0. But this means ∩∞k=1Ek cannot contain
more than one point, so this intersection is {x}.

Handout:

(A) Since
∑
an converges, we have an → 0, so there exists N such that n ≥ N =⇒ an <

1 =⇒ a2n < an. Therefore
∑
a2n converges by the Comparison Test.

(B)(a) Suppose that for some c > 0 and γ > 0 we know that the inequality

(∗) an ≥ cγn.

holds for both n and n+ 1. We would like to show that it then holds for n+ 2. The validity
of (∗) for n and n+ 1 implies that

an+2 = an+1 + an ≥ cγn+1 + cγn,

so to conclude that (∗) holds for n + 2 it is sufficient that the right side of this inequality
satisfy

cγn+1 + cγn ≥ cγn+2.

We can divide out cγn so this is equivalent to γ + 1 ≥ γ2. The quadratic formula gives us
the roots of γ + 1 = γ2, and we conclude that γ + 1 ≥ γ2 is valid for all 1 < γ ≤ (1 +

√
5)/2.

For such γ, we have shown that if (∗) holds for n and n + 1, it also holds for n + 2. To
prove by induction that (∗) holds for all n, we need to start off the induction by showing it
holds for n = 1, 2. This means that we need to show

1 = a1 ≥ cγ and 1 = a2 ≥ cγ2.
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But these are both true provided we choose c < min(1/γ, 1/γ2).
Thus for all 1 < γ ≤ (1 +

√
5)/2 and 0 < c < min(1/γ, 1/γ2), (∗) holds for all n.

(b) By (a) we have 1/an ≤ 1/cγn, and
∑

1
cγn

converges (geometric series with 1/γ < 1),

so by the Comparison Test,
∑

1
an

converges.

(c) From (a), taking γ0 = (1 +
√

5)/2 we have

n−1 log an ≥ n−1 log(cγn0 ) = n−1(log c+ n log γ0) = n−1 log c+ log γ0. (1)

In the other direction, as in (a), consider the inequality

(∗∗) an ≤ γn0 .

Since a1 = a2 = 1, this is true for n = 1, 2. Suppose (∗∗) is true for some integers n, n + 1.
Since γ0 is a root of γ2 − γ − 1, we have γ0 + 1 = γ20 . Therefore

an+2 = an+1 + an ≤ γn+1
0 + γn0 = γn0 (γ0 + 1) = γn+2

0 ,

so (∗∗) holds for n+ 2. Thus by induction, (∗∗) holds for all n, and therefore

n−1 log c+ log γ0 ≤ n−1 log an ≤ n−1 log(γn0 ) = log γ0.

It follows that ∣∣log γ0 − n−1 log an
∣∣ ≤ ∣∣n−1 log c

∣∣→ 0 as n→∞,

that is, n−1 log an → log γ0.

(C) Suppose first that L is finite. Let ε > 0. There exists N1 such that n ≥ N1 =⇒∣∣ |an+1|
|an| − L

∣∣ < ε. Hence for n ≥ N1 we have

|an| = |aN1|
n−1∏
j=N1

|aj+1|
|aj|

≤ |aN1|(L+ ε)n−N1 (2)

so |an|1/n ≤ |aN1|1/n(L+ ε)1−N1/n → L+ ε as n→∞. It follows that lim sup |an|1/n ≤ L+ ε
and then since ε is arbitrary, lim sup |an|1/n ≤ L.

If L = 0, this shows lim sup |an|1/n = L and we are done. If L > 0, we can repeat the
above reasoning with 0 < ε < L to obtain that for n ≥ N1,

|an| = |aN1|
n−1∏
j=N1

|aj+1|
|aj|

≥ |aN1|(L− ε)n−N1 . (3)

As above it follows that lim sup |an|1/n ≥ L− ε and then since ε is arbitrary, lim sup |an|1/n ≥
L. Therefore lim sup |an|1/n = L.

Next suppose L = +∞. Then given R > 0 there exists N2 such that n ≥ N2 =⇒
|an+1|
|an| > R, so as in (3), |an| ≥ |aN1 |Rn−N1 , and then lim sup |an|1/n ≥ R. Since R is arbitrary

this shows lim sup |an|1/n = +∞.
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(D)(a) limn

(
1
n2

)1/n
= limn

1
n2/n = 1 so R = 1.

(b) limn

(
1

(logn)n

)1/n
= limn

1
logn

= 0 so R =∞.

(c) limn

(
n4

3n

)1/n
= limn

n4/n

3
= 1

3
so R = 3.

(d) We use (C). We have |an+1|
|an| = (n+1)n+1

(n+1)!
n!
nn = (1 + 1

n
)n → e so R = 1/e.

(e) We use (C) again. We have |an+1|
|an| = ((n+1)!)2

(2n+2)!
(2n)!
(n!)2

= (n+1)2

(2n+1)(2n+2)
= (n+1)2

(2n+2)2
2n+2
2n+1

=
1
4
2n+2
2n+1

→ 1
4
, so R = 4.

(E)(a) Since n− 1 ≥ n/2 for all n ≥ 2, we have 1
n(n−1) ≤

2
n2 . Since

∑
2
n2 converges, so does∑

1
n(n−1) by the Comparison Test.

(b) Since n2 +1 ≤ 2n2 for all n ≥ 1, we have
√

6n
n2+1

≥
√

6n
2n2 =

√
3√
n
. Since

∑ √
3√
n

diverges,

so does
∑√

6n
n2+1

, by the Comparison Test.

(c) Let q ∈ (1, p). Since logn
np−q → 0, there exists N such that n ≥ N =⇒ log n ≤

np−q =⇒ logn
np ≤ 1

nq . Since q > 1, the series
∑

1
nq converges, hence so does

∑ logn
np by the

Comparison Test.

(F)(a) If s2n → s then s2n+1 = s2n + a2n+1 → s + 0 = s also. Hence given ε > 0 there exist
N1, N2 such that

n ≥ N1, n even =⇒ |sn − s| < ε, n ≥ N2, n odd =⇒ |sn − s| < ε,

the full sequence sn → s, that is, the series converges to s. ADD MORE
(b) This is false. For example take an = (−1)n. Then s2n−1 = −1, s2n = 0 for all n, so

both the subsequences are constant, hence convergent. But the full sequence {sn} does not
converge.

(G) We first determine for which n the given term can be compared to an. In fact we have

a
2/5
n

n2/3
≤ an ⇐⇒ an ≥

1

n10/9
.

For other n (that is, those with an <
1

n10/9 ) we have

a
2/5
n

n2/3
≤ 1

n4/9

1

n2/3
=

1

n10/9

Therefore

a
2/5
n

n2/3
≤

{
an if an ≥ 1

n10/9 ,
1

n10/9 if an <
1

n10/9

≤ an +
1

n10/9
for all n.
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Since
∑

n(an + n−10/9) converges, so does
∑

n a
2/5
n /n2/3 by the Comparison Test.

(H)(a) First simplify each term algebraically:

∞∑
k=1

(
a1

3k − 2
+

a2
3k − 1

+
a3
3k
− a1 + a2 + a3

3k

)
(4)

=
∞∑
k=1

(
a1

(
1

3k − 2
− 1

3k

)
+ a2

(
1

3k − 1
− 1

3k

))
=
∞∑
k=1

(
2a1

3k(3k − 2)
+

a2
3k(3k − 1)

)
Now compare both terms to (constant)/k2: for all k ≥ 1 we have

3k − 2 ≥ k and 3k − 1 ≥ 2k,

and therefore∣∣∣∣ 2a1
3k(k − 2)

+
a2

3k(3k − 1)

∣∣∣∣ ≤ 2|a1|
3k(k − 2)

+
|a2|

3k(3k − 1)
≤ 2|a1|

3k · k
+
|a2|

3k · 2k
=

4|a1|+ |a2|
6

1

k2
.

Since
∑

k C/k
2 converges for any constant C, the convergence of the original series (4) follows

from the Comparison Test.
(b) If the series

∞∑
k=1

(
a1

3k − 2
+

a2
3k − 1

+
a3
3k

)
(5)

converged, we could subtract the convergent series (4) (in part (a)) from it, and as a result
the series

∞∑
k=1

a1 + a2 + a3
3k

would converge. But this is a nonzero multiple of the harmonic series, so it does not converge.
Therefore the series (5) must not converge.

(c) When a1 + a2 + a3 = 0, the convergent series (4) in part (a) is the same as (5), so (5)
converges.
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