MATH 425a ASSIGNMENT 6 SOLUTIONS
FALL 2016 Prof. Alexander

These solutions are for the individual use of Math 425a students and are not to be distributed
outside that group.

Rudin Chapter 3:

(10) Suppose a,, € Z and a, # 0 for infinitely many n, say for indices n; < ny < ....
Then |a,,| > 1 for all k, so |a,,|"/™ > 1. The existence of such a subsequence shows that
lim supy,_, . |a,|'" > 1,50 R < 1.

(21) Suppose X is complete and Ey D Ey O ..., with E, nonempty, closed and bounded,
satisfying diam(E,,) — 0. Let z,, € E,,. Given € > 0, there exists NV such that diam(Ey) < e.
Then for n,m > N we have z,,, z,, € En s0 d(zp, x,,) < €. This shows that {z,} is Cauchy;
since X is complete we have z,, — x for some x. For fixed k we have xyp, xpy1, -+ € E,
x — x and Ej, closed, so x € Ey, for all k. Thus z € N3, Ey. Now for all n, diam (N2, Ey) <
diam(E,) — 0 as n — oo, so diam(N®,E)) = 0. But this means N2, E} cannot contain
more than one point, so this intersection is {z}.

Handout:

(A) Since ) a, converges, we have a,, — 0, so there exists N such that n > N = a, <
1 = a2 < a,. Therefore Y a? converges by the Comparison Test.

(B)(a) Suppose that for some ¢ > 0 and v > 0 we know that the inequality
(x)  an=cy"

holds for both n and n+ 1. We would like to show that it then holds for n + 2. The validity
of (%) for n and n + 1 implies that

_ n+1 n
Upto = Qpy1 + Ay 2> CY + vy,

so to conclude that (%) holds for n + 2 it is sufficient that the right side of this inequality
satisfy
C’}/n—i—l 4 C,yn Z C’Yn+2-

We can divide out ¢y™ so this is equivalent to v + 1 > v2. The quadratic formula gives us
the roots of ¥4 1 = 42, and we conclude that v +1 > ~? is valid for all 1 < < (1++/5)/2.

For such 7, we have shown that if (%) holds for n and n + 1, it also holds for n + 2. To
prove by induction that (%) holds for all n, we need to start off the induction by showing it
holds for n = 1, 2. This means that we need to show

1l=a; >cy and 1:a22072.



But these are both true provided we choose ¢ < min(1/v,1/7?).

Thus for all 1 < v < (1 ++/5)/2 and 0 < ¢ < min(1/7, 1/4?), (¥) holds for all n.

(b) By (a) we have 1/a,, < 1/cy™, and »_ C%n converges (geometric series with 1/v < 1),
so by the Comparison Test, > i converges.

(c) From (a), taking 7o = (1 + v/5)/2 we have

ntloga, > n"tlog(cyy) = n (logc+ nlogyy) = n ' logc + logyo. (1)
In the other direction, as in (a), consider the inequality
(%) an <7g-

Since a; = ap = 1, this is true for n = 1,2. Suppose (xx) is true for some integers n,n + 1.
Since vy is a root of 2 — v — 1, we have vy + 1 = 3. Therefore

Uny2 = npr + a0 <7 95 =500 +1) =57,
so (x%) holds for n + 2. Thus by induction, (*x) holds for all n, and therefore
n~'logc+logyy < n'loga, < n tlog(yd) = log Y.

It follows that
logyo —n"" IOgan‘ < ‘n_llogc| —0 asn — oo,

that is, n~!log a, — log .

(C) Suppose first that L is finite. Let ¢ > 0. There exists Ny such that n > N =
lansr] L‘ < ¢. Hence for n > N; we have

|an]

n—1
a/A
|an| = |an,| H | |]a+|1| < law |(L + e (2)
Jj=N1 J

S0 |an|"™ < |an, |V™(L 4 €)'"N/" — L + € as n — oo. It follows that limsup |a,|"/" < L + ¢
and then since ¢ is arbitrary, limsup |a,|'/" < L.

If L = 0, this shows limsup|a,|'/” = L and we are done. If L > 0, we can repeat the
above reasoning with 0 < € < L to obtain that for n > Ny,

n—1
|CL‘+1| n—N;
janl = lan,| ] = 2 lan|(L =€) M, (3)

As above it follows that lim sup |a,|'/™ > L — e and then since ¢ is arbitrary, lim sup |a,,|'/" >
L. Therefore limsup |a,|"/" = L.

Next suppose L = +o0. Then given R > 0 there exists Ny such that n > Ny —
lansil 5 R 50 as in (3), |an| > |an,|R*M, and then lim sup |a,|'/" > R. Since R is arbitrary

lan|
this shows lim sup |a,|"/" = +oo.



(D)(a) lim, (%)1/71 =lim, 7 =1s0o R=1.

n

1/n
(b) timy, (kg ) = limy by = 050 R = o0,
1/n . nd/n 1

(c) lim, ( ) = lim, "5~ = 3 s0o R =3.
(d) We use (C). We have |‘TZZ|1| = (11(221)|1n_" =(1+1)"—>esoR=1/e.

: lansi] _ ((ntDH? (20)! (n+1)? _ (n41)? ong2
e) We use (C) again. We have ‘a:f = @il (F T @iDens = Gniae ot =

o — 1,50 R=4.

(E)(a) Since n — 1 > n/2 for all n > 2, we have m < Z. Since Y % converges, so does
> n(; by the Comparison Test.

(b) Since n* 41 < 2n? for all n > 1, we have /8% > |/ 7% = Y2, Since S V3 V= diverges,

so does ) /8%,
(c) Let ¢ € (1,p). Since 287 _, 0, there exists N such that n > N =— logn <
logn

nP—4
nP~? = 182 < L Gince ¢ > 1, the series Y -1 converges, hence so does Y '&" by the
Comparison Test.

by the Comparison Test.

(F)(a) If s9, — s then So,41 = Sop + a2,41 — s+ 0 = s also. Hence given € > 0 there exist
Ny, Ny such that

n> Ny,neven = |s, —s|<e, n>Nynodd = |s, —s|<e,

the full sequence s,, — s, that is, the series converges to s. ADD MORE

(b) This is false. For example take a, = (—1)". Then s, 1 = —1, 9, = 0 for all n, so
both the subsequences are constant, hence convergent. But the full sequence {s,} does not
converge.

(G) We first determine for which n the given term can be compared to a,. In fact we have

22/
n2/3 San S anz W
For other n (that is, those with a,, < —7) we have
al®> 11 1

n2/3 = n4/9n2/3  plo/9

Therefore

10/9 110/9

2/5 . 1
Qn < Ay, if (7% Z 10795
n23 = | L. ifa, < s

n

1
<a, -+ 107 for all n.



Since Y (a, +n~9?) converges, so does Y a?/® /n/3 by the Comparison Test.

(H)(a) First simplify each term algebraically:
> ay as as ay+az+as
—_— 4
;<3k—2+3k—1+3k 3k ) (4)
B i . L I N 1 1
T\ B2 ) T B Bk

a2
3k 3k — 2 3k(3k — 1)

Mg

k=1
Now compare both terms to (constant)/k?: for all k > 1 we have

3k—22>k and 3k—12> 2k,

and therefore

2a, as ‘ 2|y jas]  _ 2]ad] las|  4far| + fao| T

Sk —2)  3k(Bk—1)| " 3k(k—2)  3E@E—1) "3k k  3k-2k 6 k2

Since Y, C'/k? converges for any constant C, the convergence of the original series (4) follows
from the Comparison Test.
(b) If the series

> aq (05} as
— )
;(3k—2+3k—1+3k> (5)
converged, we could subtract the convergent series (4) (in part (a)) from it, and as a result

the series .
Z ay + az + ag
3k

k=1
would converge. But this is a nonzero multiple of the harmonic series, so it does not converge.
Therefore the series (5) must not converge.
(c) When aq + as + a3 = 0, the convergent series (4) in part (a) is the same as (5), so (5)
converges.



