MATH 425a ASSIGNMENT 6
 FALL 2016 Prof. Alexander Due Friday October 21.

Rudin Chapter $3 \# 10$, 21 plus the problems (A)-(G) below:
(A) Suppose $a_{n}>0$ and $\sum_{n} a_{n}$ converges. Show that $\sum_{n} a_{n}^{2}$ converges.
(B) Let $\left\{a_{n}\right\}$ be the Fibonacci sequence $1,1,2,3,5,8, \ldots$ given by $a_{1}=a_{2}=1$ and $a_{n+2}=$ $a_{n+1}+a_{n}$ for all $n \geq 1$.
(a) Find numbers $c>0$ and $1<\gamma<2$ such that $a_{n} \geq c \gamma^{n}$ for all $n \geq 1$.
(b) Show that $\sum_{n} \frac{1}{a_{n}}$ converges.
(c)(Harder bonus problem!) Show that $\lim _{n} n^{-1} \log a_{n}=\log \frac{1+\sqrt{5}}{2}$. HINT: Look carefully at what you did in (a).
(C) Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{R}, and suppose $L=\lim _{n}\left|a_{n+1} / a_{n}\right|$ exists. Show that $\lim _{n}\left|a_{n}\right|^{1 / n}=L$ also. (Note this gives an alternate way of finding the radius of convergence of a power series. It also shows that the root test is stronger than the ratio test.)
(D) Find the radius of convergence. Problem (C) may be useful for some.
(a) $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$
(b) $\sum_{n=2}^{\infty} \frac{x^{n}}{(\log n)^{n}}$
(c) $\sum_{n=0}^{\infty} \frac{n^{4}}{5^{n}} x^{n}$
(d) $\sum_{n=1}^{\infty} \frac{n^{n}}{n!} x^{n}$
(e) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!} x^{n}$
(E) Establish convergence or divergence:
(a) $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$
(b) $\sum_{n=1}^{\infty} \sqrt{\frac{6 n}{n^{2}+1}}$
(c) $\sum_{n=1}^{\infty} \frac{\log n}{n^{p}}$, with $p>1$.
(F) Let $\left\{a_{n}\right\}$ be a sequence and $s_{n}=\sum_{i=1}^{n} a_{i}$.
(a) If the sequence $s_{2}, s_{4}, s_{6}, \ldots$ of even partial sums converges, and $a_{n} \rightarrow 0$, show that $\sum a_{n}$ converges.
(b) Prove by logic, or disprove by example: without assuming $a_{n} \rightarrow 0$, if the subsequences $s_{1}, s_{3}, s_{5}, \ldots$ and $s_{2}, s_{4}, s_{6}, \ldots$ are both convergent, then $\sum a_{n}$ converges.
(G) Suppose $a_{n} \geq 0$ and $\sum_{n} a_{n}$ converges. Show that the series

$$
\sum_{n} \frac{a_{n}^{2 / 5}}{n^{2 / 3}}
$$

converges.
(H) Let $a_{1}, a_{2}, a_{3} \in \mathbb{C}$.
(a) Show that

$$
\sum_{k=1}^{\infty}\left(\frac{a_{1}}{3 k-2}+\frac{a_{2}}{3 k-1}+\frac{a_{3}}{3 k}-\frac{a_{1}+a_{2}+a_{3}}{3 k}\right)
$$

converges.
(b) Suppose $a_{1}+a_{2}+a_{3} \neq 0$. Show that

$$
\sum_{k=1}^{\infty}\left(\frac{a_{1}}{3 k-2}+\frac{a_{2}}{3 k-1}+\frac{a_{3}}{3 k}\right)
$$

diverges. (Note that this is like the series $\sum_{n} 1 / n$, but with each term multiplied successively by $a_{1}, a_{2}, a_{3}, a_{1}, a_{2}, a_{3}, \ldots$, and the terms then grouped into threes.)
(c) Suppose $a_{1}+a_{2}+a_{3}=0$. Show that

$$
\sum_{k=1}^{\infty}\left(\frac{a_{1}}{3 k-2}+\frac{a_{2}}{3 k-1}+\frac{a_{3}}{3 k}\right)
$$

converges.

HINTS:

(21) This one is challenging. Make use of a sequence consisting of one point out of each E_{n}.
(B)(a) Suppose the relation $a_{n} \geq c \gamma^{n}$ holds for some indices n and $n+1$. Try to use this to obtain the same relation for index $n+2$, using $a_{n+2}=a_{n+1}+a_{n}$. You will find this only works if γ satisfies a certain inequality relating $1, \gamma$ and γ^{2}. Figure out what γ^{\prime} s satisfy this inequality, and pick any one such γ. Now use induction to establish the relation for all n.
(C) Fix $\epsilon>0$ and show separately that $\left|a_{n}\right|^{1 / n}<L+\epsilon$ and $\left|a_{n}\right|^{1 / n}>L-\epsilon$, for large enough n.
(F) Consider the situation in which each subsequence is constant.
(G) Try the "Comparison Test with two bounds" method shown in lecture. When can you bound $a_{n}^{2 / 5} / n^{2 / 3}$ by a_{n} ?
(H)(a) Simplify algebraically. (b) If this series converged, what other series would have to converge, because of part (a)? Does that series actually converge?

