MATH 425a ASSIGNMENT 5 SOLUTIONS FALL 2016 Prof. Alexander

These solutions are for the individual use of Math 425a students and are not to be distributed outside that group.

Rudin Chapter 3:

(3) We claim that for all $n \ge 1$,

$$(*) \qquad s_n < 2 \quad \text{and} \quad s_n \le s_{n+1}.$$

We check for n = 1: clearly $s_1 = \sqrt{2} < 2$, and $s_2 > \sqrt{2} = s_1$, so (*) is true for n = 1. Suppose it is true for some n. Now

$$s_n \le s_{n+1} \implies \sqrt{s_n} \le \sqrt{s_{n+1}} \implies \sqrt{2 + \sqrt{s_n}} \le \sqrt{2 + \sqrt{s_{n+1}}} \implies s_{n+1} \le s_{n+2}$$

and similarly

$$s_n < 2 \implies \sqrt{s_n} < \sqrt{2} \implies s_{n+1} = \sqrt{2 + \sqrt{s_n}} < \sqrt{2 + \sqrt{2}} < 2$$

so (*) is true for n + 1. Thus by induction, (*) is true for all $n \ge 1$. It follows that $\{s_n\}$ is a bounded monotone increasing sequence, so it must converge, by 3.14.

(5) Let $\alpha = \limsup a_n, \beta = \limsup b_n$.

Suppose first that neither α nor β is $+\infty$. Let $r > \alpha$ and $s > \beta$. From 3.17, there exist N_1, N_2 such that

$$n \ge N_1 \implies a_n < r, \qquad n \ge N_2 \implies b_n < s.$$

Then $n \ge \max(N_1, N_2) \implies a_n + b_n < r + s$, so there are only finitely many values $a_n + b_n \ge r + s$. This means $\{a_n + b_n\}$ has no subsequential limits above r + s, so $\limsup_n (a_n + b_n) \le r + s$. Since $r > \alpha$ and $s > \beta$ are arbitrary, it follows that $\limsup_n (a_n + b_n) \le \alpha + \beta$.

If one of α, β is $+\infty$ and the other is not $-\infty$, then the right side $\alpha + \beta$ of the desired inequality is $+\infty$ so there is nothing to prove.

Handout:

(I)(a) Let $\epsilon > 0$. There exist N_1 such that $n \ge N_1 \implies |s_n - 2| < \epsilon$, and K_1 such that $k \ge K_1 \implies |s_{n_k} + t_{n_k} - c| < \epsilon$, and K_3 such that $k \ge K_3 \implies n_k \ge N_1 \implies |s_{n_k} - 2| < \epsilon$. Let $K = \max(K_2, K_3)$. For $k \ge K$ we have

$$|t_{n_k} - (c-2)| = |s_{n_k} + t_{n_k} - c - (s_{n_k} - 2)| \le |s_{n_k} + t_{n_k} - c| + |s_{n_k} - 2| < 2\epsilon$$

Since ϵ is arbitrary this shows $t_{n_k} \to c-2$.

(b) If c is a subsequential limit of $\{s_n + t_n\}$, then by (a), c - 2 is a subsequential limit of $\{t_n\}$, so $c - 2 \leq 3$, so $c \leq 5$. This shows that $\limsup_n (s_n + t_n) \leq 5$.

(II) Since $p \in G$ and G is open, there is a neighborhood $N_r(p) \subset G$. Since $p_n \to p$, there exists N such that $n \ge N \implies d(p_n, p) < r \implies p_n \in N_r(p) \implies p_n \in G$. Therefore at most N-1 points p_n are not in G.

(III) There exists a subsequence $t_{n_k} \to \alpha$, and since $s_n \to s$ we have $s_{n_k} \to s$ as well. Therefore $s_{n_k} + t_{n_k} \to s + \alpha$, which shows that $\limsup(s_n + t_n) \ge s + \alpha$. The opposite inequality, $\limsup(s_n + t_n) \le s + \alpha$, follows from Chapter 3 #5 in Rudin (above.) Therefore we have equality.

(IV)(a) Let $\epsilon > 0$. There exists N such that $n > N \implies |x_n| < \epsilon$. Then for n > N,

$$\left|\frac{x_{N+1} + \dots + x_n}{n}\right| \le \frac{1}{n} \sum_{k=N+1}^n |x_k| \le \frac{1}{n} (n-N)\epsilon \le \epsilon$$

Also $(x_1 + \cdots + x_N)/n \to 0$ as $n \to \infty$, so there exists N_1 such that $n \ge N_1 \implies |x_1 + \cdots + x_N|/n < \epsilon$. Then for $n \ge \max(N, N_1)$,

$$\left|\frac{x_1 + \dots + x_n}{n}\right| \le \left|\frac{x_1 + \dots + x_N}{n}\right| + \left|\frac{x_{N+1} + \dots + x_n}{n}\right| < 2\epsilon.$$

Since ϵ is arbitrary, this shows $a_n \to 0$.

(b) Take $x_n = (-1)^n$. Then $x_1 + \cdots + x_n$ is either 0 or -1 for all n, so a_n is either 0 or -1/n, so $a_n \to 0$, though $x_n \neq 0$.

(c) We prove the contrapositive. Suppose $\{x_k\}$ is bounded, say $|x_k| \leq M$ for all k. Then $|a_n| = |x_1 + \cdots + x_n|/n \leq (|x_1| + \cdots + |x_n|)/n \leq nM/n = M$ for all n, so $\{a_n\}$ is bounded.

(V) For even *n*, the sequence is $(1 + \frac{1}{n})^n \to e$, and for odd *n* it is $(1 + \frac{1}{n})^{-n} \to 1/e$. Therefore *e* and 1/e are the only subsequential limits, so the lim sup is *e* and the lim inf is 1/e.

(VI) Let $p_N \in E$. Then $d(p_N, p) > 0$ (since all points are assumed distinct), so we can take $0 < r < d(p_N, p)/2$. Then the neighborhoods $N_r(p)$ and $N_r(p_N)$ are disjoint. Since $p_n \to p$, there are only finitely many points of E outside $N_r(p)$, hence only finitely many in $N_r(p_N)$. This means that p_N is not a limit point of E, so it is an isolated point.

(VII)(a) (-∞, x] is a closed set, and a_n ∈ (-∞, x] for all n, so a ∈ (-∞, x], that is, a ≤ x.
(b) If sup{a_n} = ∞ there is nothing to prove, so assume y = sup{a_n} < ∞. For any converging subsequence a_{nk} → a we have a_{nk} ≤ y for all k, so a ≤ y by (a). Therefore the lim sup (the largest subsequential limit) is bounded by y as well.

(VIII) Suppose $\{x_n\}$ is bounded, say $|x_n| \leq M$ for all n. Given $\epsilon > 0$ there exists N such that $n \geq N \implies |\delta_n| < \epsilon/M \implies |x_n\delta_n| = |x_n||\delta_n| < M \cdot \epsilon/M = \epsilon$. This shows $x_n\delta_n \to 0$.

(IX) Suppose $a_n \to a$. From Chapter 1 #13 we have $||a_n| - |a|| \le |a_n - a| \to 0$, so $|a_n| \to |a|$.

(X)(a) Since A, B are closed, $A \cap \overline{B} = A \cap B = \phi$ and $\overline{A} \cap B = A \cap B = \phi$. Thus A and B are separated.

(b) Suppose A, B are open and disjoint. If $x \in B$ then x has a neighborhood $N \subset B$ so N contains no points of A. This shows $x \notin A'$. Thus $B \cap A' = \phi$, so $B \cap \overline{A} = \phi$. Similarly $A \cap \overline{B} = \phi$. Thus A, B are separated.

(c) Since B is a neighborhood, it is open. To show A is open, let $x \in A$ and $0 < \delta < d(p, x) - r$. If $y \in N_{\delta}(x)$ then

$$d(p,x) \le d(p,y) + d(y,x) < d(p,y) + \delta$$
 so $d(y,x) > d(p,y) - \delta > r$,

so $y \in A$. This shows x has a neighborhood $N_{\delta}(y)$ in A, so A is open. Since A, B are open and disjoint, by part (b) they are separated.

(d) Let 0 < r < d(p,q) and define A, B as in part (c). If there are no points z with d(p, z) = r, then $A \cup B$ is all of X, and by part (b), A and B are separated, and nonempty since $p \in B$ and $q \in A$, so X is not connected, a contradiction. Thus there must be a point $z \in X$ with d(p, z) = r; this is true for each r between 0 and d(p, q). Since there are uncountably many r values, there must be uncountably many corresponding z's, so X is uncountable.