MATH 425a ASSIGNMENT 5 SOLUTIONS
 FALL 2016 Prof. Alexander

These solutions are for the individual use of Math 425a students and are not to be distributed outside that group.

Rudin Chapter 3:

(3) We claim that for all $n \geq 1$,

$$
(*) \quad s_{n}<2 \quad \text { and } \quad s_{n} \leq s_{n+1} .
$$

We check for $n=1$: clearly $s_{1}=\sqrt{2}<2$, and $s_{2}>\sqrt{2}=s_{1}$, so $(*)$ is true for $n=1$. Suppose it is true for some n. Now

$$
s_{n} \leq s_{n+1} \Longrightarrow \sqrt{s_{n}} \leq \sqrt{s_{n+1}} \Longrightarrow \sqrt{2+\sqrt{s_{n}}} \leq \sqrt{2+\sqrt{s_{n+1}}} \Longrightarrow s_{n+1} \leq s_{n+2},
$$

and similarly

$$
s_{n}<2 \Longrightarrow \sqrt{s_{n}}<\sqrt{2} \Longrightarrow s_{n+1}=\sqrt{2+\sqrt{s_{n}}}<\sqrt{2+\sqrt{2}}<2
$$

so $(*)$ is true for $n+1$. Thus by induction, $(*)$ is true for all $n \geq 1$. It follows that $\left\{s_{n}\right\}$ is a bounded monotone increasing sequence, so it must converge, by 3.14.
(5) Let $\alpha=\limsup a_{n}, \beta=\lim \sup b_{n}$.

Suppose first that neither α nor β is $+\infty$. Let $r>\alpha$ and $s>\beta$. From 3.17, there exist N_{1}, N_{2} such that

$$
n \geq N_{1} \Longrightarrow a_{n}<r, \quad n \geq N_{2} \Longrightarrow b_{n}<s
$$

Then $n \geq \max \left(N_{1}, N_{2}\right) \Longrightarrow a_{n}+b_{n}<r+s$, so there are only finitely many values $a_{n}+b_{n} \geq$ $r+s$. This means $\left\{a_{n}+b_{n}\right\}$ has no subsequential limits above $r+s$, so $\lim \sup _{n}\left(a_{n}+b_{n}\right) \leq r+s$. Since $r>\alpha$ and $s>\beta$ are arbitrary, it follows that $\lim _{\sup }^{n}\left(a_{n}+b_{n}\right) \leq \alpha+\beta$.

If one of α, β is $+\infty$ and the other is not $-\infty$, then the right side $\alpha+\beta$ of the desired inequality is $+\infty$ so there is nothing to prove.

Handout:

(I)(a) Let $\epsilon>0$. There exist N_{1} such that $n \geq N_{1} \Longrightarrow\left|s_{n}-2\right|<\epsilon$, and K_{1} such that $k \geq K_{1} \Longrightarrow\left|s_{n_{k}}+t_{n_{k}}-c\right|<\epsilon$, and K_{3} such that $k \geq K_{3} \Longrightarrow n_{k} \geq N_{1} \Longrightarrow\left|s_{n_{k}}-2\right|<\epsilon$. Let $K=\max \left(K_{2}, K_{3}\right)$. For $k \geq K$ we have

$$
\left|t_{n_{k}}-(c-2)\right|=\left|s_{n_{k}}+t_{n_{k}}-c-\left(s_{n_{k}}-2\right)\right| \leq\left|s_{n_{k}}+t_{n_{k}}-c\right|+\left|s_{n_{k}}-2\right|<2 \epsilon
$$

Since ϵ is arbitrary this shows $t_{n_{k}} \rightarrow c-2$.
(b) If c is a subsequential limit of $\left\{s_{n}+t_{n}\right\}$, then by (a), $c-2$ is a subsequential limit of $\left\{t_{n}\right\}$, so $c-2 \leq 3$, so $c \leq 5$. This shows that $\limsup _{n}\left(s_{n}+t_{n}\right) \leq 5$.
(II) Since $p \in G$ and G is open, there is a neighborhood $N_{r}(p) \subset G$. Since $p_{n} \rightarrow p$, there exists N such that $n \geq N \Longrightarrow d\left(p_{n}, p\right)<r \Longrightarrow p_{n} \in N_{r}(p) \Longrightarrow p_{n} \in G$. Therefore at most $N-1$ points p_{n} are not in G.
(III) There exists a subsequence $t_{n_{k}} \rightarrow \alpha$, and since $s_{n} \rightarrow s$ we have $s_{n_{k}} \rightarrow s$ as well. Therefore $s_{n_{k}}+t_{n_{k}} \rightarrow s+\alpha$, which shows that $\lim \sup \left(s_{n}+t_{n}\right) \geq s+\alpha$. The opposite inequality, $\lim \sup \left(s_{n}+t_{n}\right) \leq s+\alpha$, follows from Chapter $3 \# 5$ in Rudin (above.) Therefore we have equality.
(IV)(a) Let $\epsilon>0$. There exists N such that $n>N \Longrightarrow\left|x_{n}\right|<\epsilon$. Then for $n>N$,

$$
\left|\frac{x_{N+1}+\cdots+x_{n}}{n}\right| \leq \frac{1}{n} \sum_{k=N+1}^{n}\left|x_{k}\right| \leq \frac{1}{n}(n-N) \epsilon \leq \epsilon .
$$

Also $\left(x_{1}+\cdots+x_{N}\right) / n \rightarrow 0$ as $n \rightarrow \infty$, so there exists N_{1} such that $n \geq N_{1} \Longrightarrow \mid x_{1}+\cdots+$ $x_{N} \mid / n<\epsilon$. Then for $n \geq \max \left(N, N_{1}\right)$,

$$
\left|\frac{x_{1}+\cdots+x_{n}}{n}\right| \leq\left|\frac{x_{1}+\cdots+x_{N}}{n}\right|+\left|\frac{x_{N+1}+\cdots+x_{n}}{n}\right|<2 \epsilon
$$

Since ϵ is arbitrary, this shows $a_{n} \rightarrow 0$.
(b) Take $x_{n}=(-1)^{n}$. Then $x_{1}+\cdots+x_{n}$ is either 0 or -1 for all n, so a_{n} is either 0 or $-1 / n$, so $a_{n} \rightarrow 0$, though $x_{n} \nrightarrow 0$.
(c) We prove the contrapositive. Suppose $\left\{x_{k}\right\}$ is bounded, say $\left|x_{k}\right| \leq M$ for all k. Then $\left|a_{n}\right|=\left|x_{1}+\cdots+x_{n}\right| / n \leq\left(\left|x_{1}\right|+\cdots+\left|x_{n}\right|\right) / n \leq n M / n=M$ for all n, so $\left\{a_{n}\right\}$ is bounded.
(V) For even n, the sequence is $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$, and for odd n it is $\left(1+\frac{1}{n}\right)^{-n} \rightarrow 1 / e$. Therefore e and $1 / e$ are the only subsequential limits, so the $\lim \sup$ is e and the $\lim \inf$ is $1 / e$.
(VI) Let $p_{N} \in E$. Then $d\left(p_{N}, p\right)>0$ (since all points are assumed distinct), so we can take $0<r<d\left(p_{N}, p\right) / 2$. Then the neighborhoods $N_{r}(p)$ and $N_{r}\left(p_{N}\right)$ are disjoint. Since $p_{n} \rightarrow p$, there are only finitely many points of E outside $N_{r}(p)$, hence only finitely many in $N_{r}\left(p_{N}\right)$. This means that p_{N} is not a limit point of E, so it is an isolated point.
(VII)(a) $(-\infty, x]$ is a closed set, and $a_{n} \in(-\infty, x]$ for all n, so $a \in(-\infty, x]$, that is, $a \leq x$.
(b) If $\sup \left\{a_{n}\right\}=\infty$ there is nothing to prove, so assume $y=\sup \left\{a_{n}\right\}<\infty$. For any converging subsequence $a_{n_{k}} \rightarrow a$ we have $a_{n_{k}} \leq y$ for all k, so $a \leq y$ by (a). Therefore the lim sup (the largest subsequential limit) is bounded by y as well.
(VIII) Suppose $\left\{x_{n}\right\}$ is bounded, say $\left|x_{n}\right| \leq M$ for all n. Given $\epsilon>0$ there exists N such that $n \geq N \Longrightarrow\left|\delta_{n}\right|<\epsilon / M \Longrightarrow\left|x_{n} \delta_{n}\right|=\left|x_{n}\right|\left|\delta_{n}\right|<M \cdot \epsilon / M=\epsilon$. This shows $x_{n} \delta_{n} \rightarrow 0$.
(IX) Suppose $a_{n} \rightarrow a$. From Chapter $1 \# 13$ we have $\left|\left|a_{n}\right|-|a|\right| \leq\left|a_{n}-a\right| \rightarrow 0$, so $\left|a_{n}\right| \rightarrow|a|$.
(X)(a) Since A, B are closed, $A \cap \bar{B}=A \cap B=\phi$ and $\bar{A} \cap B=A \cap B=\phi$. Thus A and B are separated.
(b) Suppose A, B are open and disjoint. If $x \in B$ then x has a neighborhood $N \subset B$ so N contains no points of A. This shows $x \notin A^{\prime}$. Thus $B \cap A^{\prime}=\phi$, so $B \cap \bar{A}=\phi$. Similarly $A \cap \bar{B}=\phi$. Thus A, B are separated.
(c) Since B is a neighborhood, it is open. To show A is open, let $x \in A$ and $0<\delta<$ $d(p, x)-r$. If $y \in N_{\delta}(x)$ then

$$
d(p, x) \leq d(p, y)+d(y, x)<d(p, y)+\delta \quad \text { so } \quad d(y, x)>d(p, y)-\delta>r
$$

so $y \in A$. This shows x has a neighborhood $N_{\delta}(y)$ in A, so A is open. Since A, B are open and disjoint, by part (b) they are separated.
(d) Let $0<r<d(p, q)$ and define A, B as in part (c). If there are no points z with $d(p, z)=r$, then $A \cup B$ is all of X, and by part (b), A and B are separated, and nonempty since $p \in B$ and $q \in A$, so X is not connected, a contradiction. Thus there must be a point $z \in X$ with $d(p, z)=r$; this is true for each r between 0 and $d(p, q)$. Since there are uncountably many r values, there must be uncountably many corresponding z 's, so X is uncountable.

