MATH 425a ASSIGNMENT 5 SOLUTIONS
FALL 2016 Prof. Alexander

These solutions are for the individual use of Math 425a students and are not to be distributed
outside that group.

Rudin Chapter 3:

(3) We claim that for all n > 1,
() Sp <2 and s, < Spuq-

We check for n = 1: clearly s = V2 < 2, and sy > V2 = s1, so (%) is true for n = 1.
Suppose it is true for some n. Now

Sp < Sp+1 = V/Sn < Sp+1 = \/ 2+ V Sn < \/ 2+ VSn+1 = Sn+1 < Sn+2,

and similarly

$n <2 = /50 < V2 = Spy1=1/24 VEn < V2+V2 <2,

so (x) is true for n+ 1. Thus by induction, () is true for all n > 1. It follows that {s,} is a
bounded monotone increasing sequence, so it must converge, by 3.14.

(5) Let o = limsup a,, f = limsup b,,.
Suppose first that neither o nor 3 is +o0o. Let r > a and s > . From 3.17, there exist
Ny, Ny such that
n>N = a,<r, n> Ny — b, <s.

Then n > max(Ny, No) = a,+b, < r+s, so there are only finitely many values a,, +b,, >
r+s. This means {a,+b,} has no subsequential limits above r+s, so lim sup,, (a,+b,) < r+s.
Since r > « and s > 3 are arbitrary, it follows that limsup,,(a, + b,) < a + 5.

If one of «, f is +00 and the other is not —oo, then the right side a + 8 of the desired
inequality is +00 so there is nothing to prove.

Handout:

(I)(a) Let € > 0. There exist Ny such that n > Ny = |s, — 2| < ¢, and K; such that
k>Ki = |sn, +1tn, —c| <e and K3 such that k > K3 = n > N; = |s,, — 2| <e.
Let K = max(Ky, K3). For k > K we have

|tnk - (C_ 2)' = |Snk +tnk —Cc— (S”k - 2)| < |Snk +tnk - C| + ’S'ﬂk - 2| < 2e.

Since € is arbitrary this shows ¢,, — ¢ — 2.



(b) If ¢ is a subsequential limit of {s, +t,}, then by (a), ¢ — 2 is a subsequential limit of
{t,}, so ¢ =2 <3, so ¢ <5. This shows that limsup,, (s, + ) < 5.

(IT) Since p € G and G is open, there is a neighborhood N,(p) C G. Since p, — p, there
exists N such that n > N = d(p,,p) <r = pn € N,(p) = pn € G. Therefore at
most N — 1 points p, are not in G.

(III) There exists a subsequence t,, — «, and since s,, — s we have s, — s as well. There-
fore s, + tn, — s+ «, which shows that limsup(s,, +t,) > s + a. The opposite inequality,
limsup(s, + t,) < s+ a, follows from Chapter 3 #5 in Rudin (above.) Therefore we have
equality.

(IV)(a) Let € > 0. There exists N such that n > N = |z,| <e. Then for n > N,

1 < 1
< — < —(n-— < e.
< g |:17k|_n(n Nye<e
k=N-+1

INy1+ o+ Ty
n

Also (1 +---+zn)/n — 0 as n — oo, so there exists N; such that n > Ny = |z1+---+
xn|/n < e. Then for n > max(N, Ny),

x1+...+xn
n

TNyl + o+ Ty
n

x+...+w
1 N +
n

< < 2e.

Since € is arbitrary, this shows a,, — 0.

(b) Take z,, = (—1)". Then x; + - - - + x,, is either 0 or —1 for all n, so a, is either 0 or
—1/n, so a, — 0, though =z, 4 0.

(c) We prove the contrapositive. Suppose {z} is bounded, say |z;| < M for all k. Then
lan| = |21+ -+ x| /n < (|x1]| + -+ |zn])/n < nM/n = M for all n, so {a,} is bounded.

(V) For even n, the sequence is (1+ )" — ¢, and for odd n it is (1+2)™" — 1/e. There-
fore e and 1/e are the only subsequential limits, so the lim sup is e and the lim inf is 1/e.

(VI) Let py € E. Then d(py,p) > 0 (since all points are assumed distinct), so we can take
0 <r <d(pn,p)/2. Then the neighborhoods N, (p) and N,(py) are disjoint. Since p, — p,
there are only finitely many points of E outside N,(p), hence only finitely many in N, (py).
This means that py is not a limit point of E, so it is an isolated point.

(VII)(a) (—oo, ] is a closed set, and a,, € (—oo, z] for all n, so a € (—o0, z], that is, a < x.

(b) If sup{a,} = oo there is nothing to prove, so assume y = sup{a,} < co. For any
converging subsequence a,, — a we have a,, <y for all k, so a <y by (a). Therefore the
lim sup (the largest subsequential limit) is bounded by y as well.

(VIII) Suppose {x,} is bounded, say |z,| < M for all n. Given € > 0 there exists N such
that n > N = |0,| < ¢/M = |2,0,] = |24||0n] < M - €¢/M = €. This shows z,,0,, — 0.



(IX) Suppose a,, = a. From Chapter 1 #13 we have ||a,| —|a|| < |a, —a| — 0, so |a,| — |a.

(X)(a) Since A, B are closed, ANB=ANB=¢and ANB=ANB=¢. Thus A and B
are separated.

(b) Suppose A, B are open and disjoint. If x € B then z has a neighborhood N C B so
N contains no points of A. This shows x ¢ A’. Thus BN A’ = ¢, so BN A = ¢. Similarly
AN B = ¢. Thus A, B are separated.

(c) Since B is a neighborhood, it is open. To show A is open, let x € A and 0 < § <
d(p,z) —r. If y € Ns(z) then

d(p,z) <d(p,y) +d(y,x) <d(p,y)+9 so d(y,x)>d(p,y)—0>r,

so y € A. This shows x has a neighborhood Nj(y) in A, so A is open. Since A, B are open
and disjoint, by part (b) they are separated.

(d) Let 0 < r < d(p,q) and define A, B as in part (c). If there are no points z with
d(p,z) =r, then AU B is all of X, and by part (b), A and B are separated, and nonempty
since p € B and ¢ € A, so X is not connected, a contradiction. Thus there must be a point
z € X with d(p, z) = r; this is true for each r between 0 and d(p, ¢). Since there are uncount-
ably many r values, there must be uncountably many corresponding z’s, so X is uncountable.



