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Rudin Chapter 3:

(3) We claim that for all n ≥ 1,

(∗) sn < 2 and sn ≤ sn+1.

We check for n = 1: clearly s1 =
√

2 < 2, and s2 >
√

2 = s1, so (∗) is true for n = 1.
Suppose it is true for some n. Now

sn ≤ sn+1 =⇒
√
sn ≤

√
sn+1 =⇒

√
2 +
√
sn ≤

√
2 +
√
sn+1 =⇒ sn+1 ≤ sn+2,

and similarly

sn < 2 =⇒
√
sn <

√
2 =⇒ sn+1 =

√
2 +
√
sn <

√
2 +
√

2 < 2,

so (∗) is true for n+ 1. Thus by induction, (∗) is true for all n ≥ 1. It follows that {sn} is a
bounded monotone increasing sequence, so it must converge, by 3.14.

(5) Let α = lim sup an, β = lim sup bn.
Suppose first that neither α nor β is +∞. Let r > α and s > β. From 3.17, there exist

N1, N2 such that
n ≥ N1 =⇒ an < r, n ≥ N2 =⇒ bn < s.

Then n ≥ max(N1, N2) =⇒ an+bn < r+s, so there are only finitely many values an+bn ≥
r+s. This means {an+bn} has no subsequential limits above r+s, so lim supn(an+bn) ≤ r+s.
Since r > α and s > β are arbitrary, it follows that lim supn(an + bn) ≤ α + β.

If one of α, β is +∞ and the other is not −∞, then the right side α + β of the desired
inequality is +∞ so there is nothing to prove.

Handout:

(I)(a) Let ε > 0. There exist N1 such that n ≥ N1 =⇒ |sn − 2| < ε, and K1 such that
k ≥ K1 =⇒ |snk

+ tnk
− c| < ε, and K3 such that k ≥ K3 =⇒ nk ≥ N1 =⇒ |snk

− 2| < ε.
Let K = max(K2, K3). For k ≥ K we have

|tnk
− (c− 2)| = |snk

+ tnk
− c− (snk

− 2)| ≤ |snk
+ tnk

− c|+ |snk
− 2| < 2ε.

Since ε is arbitrary this shows tnk
→ c− 2.
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(b) If c is a subsequential limit of {sn + tn}, then by (a), c− 2 is a subsequential limit of
{tn}, so c− 2 ≤ 3, so c ≤ 5. This shows that lim supn(sn + tn) ≤ 5.

(II) Since p ∈ G and G is open, there is a neighborhood Nr(p) ⊂ G. Since pn → p, there
exists N such that n ≥ N =⇒ d(pn, p) < r =⇒ pn ∈ Nr(p) =⇒ pn ∈ G. Therefore at
most N − 1 points pn are not in G.

(III) There exists a subsequence tnk
→ α, and since sn → s we have snk

→ s as well. There-
fore snk

+ tnk
→ s+ α, which shows that lim sup(sn + tn) ≥ s+ α. The opposite inequality,

lim sup(sn + tn) ≤ s + α, follows from Chapter 3 #5 in Rudin (above.) Therefore we have
equality.

(IV)(a) Let ε > 0. There exists N such that n > N =⇒ |xn| < ε. Then for n > N ,∣∣∣∣xN+1 + · · ·+ xn
n

∣∣∣∣ ≤ 1

n

n∑
k=N+1

|xk| ≤
1

n
(n−N)ε ≤ ε.

Also (x1 + · · ·+ xN)/n→ 0 as n→∞, so there exists N1 such that n ≥ N1 =⇒ |x1 + · · ·+
xN |/n < ε. Then for n ≥ max(N,N1),∣∣∣∣x1 + · · ·+ xn

n

∣∣∣∣ ≤ ∣∣∣∣x1 + · · ·+ xN
n

∣∣∣∣+

∣∣∣∣xN+1 + · · ·+ xn
n

∣∣∣∣ < 2ε.

Since ε is arbitrary, this shows an → 0.
(b) Take xn = (−1)n. Then x1 + · · · + xn is either 0 or −1 for all n, so an is either 0 or

−1/n, so an → 0, though xn 6→ 0.
(c) We prove the contrapositive. Suppose {xk} is bounded, say |xk| ≤M for all k. Then

|an| = |x1 + · · ·+ xn|/n ≤ (|x1|+ · · ·+ |xn|)/n ≤ nM/n = M for all n, so {an} is bounded.

(V) For even n, the sequence is
(
1 + 1

n

)n → e, and for odd n it is
(
1 + 1

n

)−n → 1/e. There-
fore e and 1/e are the only subsequential limits, so the lim sup is e and the lim inf is 1/e.

(VI) Let pN ∈ E. Then d(pN , p) > 0 (since all points are assumed distinct), so we can take
0 < r < d(pN , p)/2. Then the neighborhoods Nr(p) and Nr(pN) are disjoint. Since pn → p,
there are only finitely many points of E outside Nr(p), hence only finitely many in Nr(pN).
This means that pN is not a limit point of E, so it is an isolated point.

(VII)(a) (−∞, x] is a closed set, and an ∈ (−∞, x] for all n, so a ∈ (−∞, x], that is, a ≤ x.
(b) If sup{an} = ∞ there is nothing to prove, so assume y = sup{an} < ∞. For any

converging subsequence ank
→ a we have ank

≤ y for all k, so a ≤ y by (a). Therefore the
lim sup (the largest subsequential limit) is bounded by y as well.

(VIII) Suppose {xn} is bounded, say |xn| ≤ M for all n. Given ε > 0 there exists N such
that n ≥ N =⇒ |δn| < ε/M =⇒ |xnδn| = |xn||δn| < M · ε/M = ε. This shows xnδn → 0.
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(IX) Suppose an → a. From Chapter 1 #13 we have ||an|−|a|| ≤ |an−a| → 0, so |an| → |a|.

(X)(a) Since A,B are closed, A ∩ B̄ = A ∩ B = φ and Ā ∩ B = A ∩ B = φ. Thus A and B
are separated.

(b) Suppose A,B are open and disjoint. If x ∈ B then x has a neighborhood N ⊂ B so
N contains no points of A. This shows x /∈ A′. Thus B ∩ A′ = φ, so B ∩ Ā = φ. Similarly
A ∩ B̄ = φ. Thus A,B are separated.

(c) Since B is a neighborhood, it is open. To show A is open, let x ∈ A and 0 < δ <
d(p, x)− r. If y ∈ Nδ(x) then

d(p, x) ≤ d(p, y) + d(y, x) < d(p, y) + δ so d(y, x) > d(p, y)− δ > r,

so y ∈ A. This shows x has a neighborhood Nδ(y) in A, so A is open. Since A,B are open
and disjoint, by part (b) they are separated.

(d) Let 0 < r < d(p, q) and define A,B as in part (c). If there are no points z with
d(p, z) = r, then A ∪ B is all of X, and by part (b), A and B are separated, and nonempty
since p ∈ B and q ∈ A, so X is not connected, a contradiction. Thus there must be a point
z ∈ X with d(p, z) = r; this is true for each r between 0 and d(p, q). Since there are uncount-
ably many r values, there must be uncountably many corresponding z’s, so X is uncountable.
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