MATH 425a ASSIGNMENT 5

FALL 2016 Prof. Alexander
Due Wednesday October 12.

Rudin Chapter $3 \# 3,5$, plus the problems (I)-(X) below:
(I) Suppose $s_{n} \rightarrow 2$, and $t_{n} \leq 3$ for all n.
(a) If $s_{n_{k}}+t_{n_{k}} \rightarrow c$ for a subsequence of $\left\{s_{n}+t_{n}\right\}$, show that $t_{n_{k}} \rightarrow c-2$.
(b) Show that $\lim \sup _{n \rightarrow \infty}\left(s_{n}+t_{n}\right) \leq 5$.
(II) Suppose G is open, $p \in G$, and $p_{n} \rightarrow p$. Show that there are at most finitely many points p_{n} with $p_{n} \notin G$.
(III) Suppose $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are bounded sequences in $\mathbb{R}, s_{n} \rightarrow s, \alpha=\lim \sup t_{n}$, and $\beta=\lim \sup \left(s_{n}+t_{n}\right)$. Show that $\beta=s+\alpha$, that is,

$$
\limsup \left(s_{n}+t_{n}\right)=\lim s_{n}+\limsup t_{n}
$$

(IV)(a) Show that if $x_{k} \rightarrow 0$ in \mathbb{R} then the averages $a_{n}=\left(x_{1}+. .+x_{n}\right) / n$ also converge to 0 .
(b) Disprove the converse of (a) by giving an example.
(c) Show that if $\left\{a_{n}\right\}$ is unbounded then $\left\{x_{k}\right\}$ is unbounded.
(V) Find the lim sup and lim inf of the sequence $\left(1+\frac{1}{n}\right)^{(-1)^{n} n}$.
(VI) In a metric space X, suppose $p_{n} \rightarrow p$, all the points p_{n} and p are distinct, and $E=\left\{p_{n}: n \geq 1\right\}$. Show that every p_{n} is an isolated point of E.
(VII)(a) Let $A \subset \mathbb{R}$ and $A_{x}=A \cup\{x\}$. Show that $\sup A_{x} \geq \sup A$.
(b) Let $\left\{x_{k}\right\}$ be a bounded sequence in \mathbb{R}, and $M_{n}=\sup \left\{x_{n}, x_{n+1}, \ldots\right\}$. Show that $L=\lim _{n} M_{n}$ exists.
(c) In (b), if s is a subsequential limit of $\left\{x_{k}\right\}$, show that $s \leq L$.
(VIII) Suppose $\left\{x_{n}\right\}$ is a bounded sequence in \mathbb{R}, and $\delta_{n} \rightarrow 0$. Show that $x_{n} \delta_{n} \rightarrow 0$.
(IX) Suppose $a_{n} \rightarrow a$ in \mathbb{C}. Show that $\left|a_{n}\right| \rightarrow|a|$.
(X)(a) Suppose A and B are closed and $A \cap B=\emptyset$. Show that A and B are separated.
(b) Suppose A and B are open and $A \cap B=\emptyset$. Show that A and B are separated.
(c) Let $p \in X$ and $r>0$, and define $A=\{x \in X: d(x, p)>r\}$ and $B=B_{r}(p)=\{x \in$ $X: d(x, p)<r\}$. Show that A, B are separated.
(d) Suppose X contains at least one other point $q \neq p$, and X is connected. Show that X is uncountable.

HINTS:

(3) Prove the statement " $s_{n}<2$ and $s_{n} \leq s_{n+1}$ " by induction on n. Note in some older printings of the book, the last part of the problem is garbled-it should read, "...and that $s_{n}<2$ for $n=1,2,3, \ldots$ "
(III) For two subsequences $\left\{t_{n_{k}}\right\}$ and $\left\{s_{n_{k}}+t_{n_{k}}\right\}$ with the same indices, what happens to the second when the first converges, say to α ? Consider also the opposite direction.
(IV)(a) Given $\epsilon>0$ there exists N such that $n \geq N$ implies $\left|x_{n}\right|<\epsilon$. Deal with $x_{1}, . ., x_{N-1}$ separately.
(c) Try the contrapositive.
(V) You can use the fact from calculus that $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$.
(VI) Limit points and subsequential limits for E are the same thing. (Why? This is not always true!) Suppose some p_{n} is a limit point of E and get a contradiction.
(VII)(b) Don't do a "Let $\epsilon>0 . . . "$ proof, instead compare M_{n} and M_{n+1}.
(X)(a),(b) Use the definition of separated. Also for (b), what property do A^{c} and B^{c} have?
(d) For r satisfying $0<r<d(p, q)$, based on (a)-(c) what happens if there are no points x with $d(p, x)=r$? If there is such an x for every r, what does this tell you about (un)countability of the metric space?

