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Rudin Chapter 2:

(12) Let {Gα, α ∈ A} be an open cover of K. Since 0 ∈ K, we have 0 ∈ Gα0 for some α0.
Since Gα0 is open, there is a neighborhood Nε(0) ⊂ Gα0 . Since 1/n→ 0, there exists N such
that n ≥ N =⇒ 1/n ∈ Nε(0). For each n = 1, . . . , N − 1, since 1/n ∈ K, there exists Gαn

such that 1/n ∈ Gαn . Thus Gα0 ∪ Gα1 ∪ · · · ∪ GαN−1
contains 0 and all points 1/n, that is,

{Gα0 , . . . , GαN−1
} is a finite subcover of K. This shows K is compact.

(22) Let Qk = Q × · · · × Q be the set of all points of Rk with rational coordinates. Let
ε > 0 and x ∈ Rk. For each coordinate i, since Q is dense in R, there exists qi ∈ Q with
|xi − qi| < ε/

√
k. Letting q = (q1, . . . , qk) we then have

|x− q| =

(
k∑
i=1

(xi − qi)2
)1/2

≤
(
k
ε2

k

)1/2

= ε.

This shows Qk is dense in Rk.

Handout:

(A)(i) Let p be a limit point of Nr(x) and let ε > 0. Then by definition of limit point,
there is a point y of Nr(x) in Nε(p). Therefore d(p, x) ≤ d(p, y) + d(y, x) < ε + r. Since ε
is arbitrary, this shows d(p, x) ≤ r. Thus both Nr(x) and its limit points are contained in
{y : d(x, y) ≤ r}.

(ii) In the metric space Z, we have N1(0) = {0} which is a closed set, so N1(0) = {0}.
But {x ∈ Z : d(x, 0) ≤ 1} = {−1, 0, 1} so they are not the same.

(B) Since each x ∈ E is isolated, there exists a radius r(x) such that E ∩ Nr(x)(x) = {x}.
Since each x ∈ Nr(x)(x), the collection {Nr(x)(x) : x ∈ E} forms an open cover of E.
Let {Nr(x1)(x1), . . . , Nr(xm)(xm)} be any finite subcollection. Then E ∩

(
∪mi=1 Nr(xi)(xi)

)
=

{x1, . . . , xm}, which is finite, so it isn’t all of E. This means no finite subcollection can cover
E, that is, the original collection has no finite subcover. This shows E is not compact.

(C)(i) Let {Gα, α ∈ A} be an open cover of K ∪ {p}. Since this is also an open cover of K,
there is a finite subcover of K, say K ⊂ Gα1 ∪ · · · ∪Gαm . There is also some Gβ containing
p. Then {Gα1 , . . . , Gαm , Gβ} is a finite subcover of K ∪ {p}. Thus K ∪ {p} is compact.
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(ii) We first show that in general, the union of two compact sets L and M is compact.
Let {Gα, α ∈ A} be an open cover of L ∪M . Since this is also an open cover of each of the
compact sets L and M individually, there is a finite subcover of L, say {Gα : α ∈ B}, and
a finite subcover of M , say {Gα : α ∈ C}. Then {Gα : α ∈ B ∪ C} is a finite subcover of
L ∪M . Thus L ∪M is compact.

In this problem, since K is closed, so is D ∩ K, so D ∩ K is a closed subset of a com-
pact set, so D ∩ K is compact by 2.35. By assumption D ∩ Kc is compact, so by (i),
D = (D ∩K) ∪ (D ∩Kc) is compact.

(D) Since Gj is open, Gc
j is closed and bounded in R, hence it is compact. Since Gc

1 ⊃
Gc

2 ⊃ . . . , it follows from the Corollary after 2.36 that ∩j≥1G
c
j 6= ∅. Therefore ∪j≥1Gj =(

∩j≥1 G
c
j

)c 6= R.

(E)(i) Compact because it is closed (the only limit point is 0 which is in the set) and bounded
(all points are in [0, 1].)

(ii) Not compact because it isn’t bounded—it contains points (x, 1/x) for arbitrarily large
x.

(iii) Compact because it is closed and bounded.

(F) One example is {(1/n, 1) : n ≥ 2}. If x ∈ (0, 1) then x > 1/n for some n, so x ∈ (1/n, 1),
so x ∈ ∪n≥1(1/n, 1). It follows that the sets {(1/n, 1) : n ≥ 2} cover (0, 1), and they are open,
so they are an open cover. But if we take any finite subcollection (1/n1, 1), . . . , (1/nm, 1)
with n1 < · · · < nm, then the union of this subcollection is (1/nm, 1) so it does not cover
(0, 1). Thus our open cover has no finite subcover.

(G) [−1, 1] is closed in R, and E = (0, 1] = [−1, 1] ∩ Y , so E is closed relative to Y by
Theorem 2.30. E is bounded since d(x, 1) ≤ 1 for all x ∈ E. But E is not compact in R, by
Theorem 2.34, since it isn’t closed in R, so E is also not compact in Y , by Theorem 2.33.
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