MATH 425a ASSIGNMENT 4 FALL 2016 Prof. Alexander Due Friday September 30.

Note this assignment is due after Midterm 1, but the material IS covered on the midterm.

Rudin Chapter 2 #12, 22 plus the problems (A)–(G) below:

- (A)(i) Show that in any metric space, the closure of a neighborhood satisfies $\overline{N_r(x)} \subset \{y: d(x,y) \leq r\}$.
 - (ii) Find an example where the sets in (i) are not equal.
- (B) Suppose E is infinite and all points of E are isolated. Show directly from the definition (of compact) that E is not compact. This means do it using open covers, not by citing some theorem.
- (C)(i) Suppose K is compact and $p \notin K$. Show directly from the definition of compactness that $K \cup \{p\}$ is compact.
 - (ii) Show that if K is compact, D is closed, and $D \cap K^c$ is compact, then D is compact.
- (D) Suppose $G_1 \subset G_2 \subset ...$ are open in \mathbb{R} , and G_j^c is nonempty and bounded for all j. Show that $\bigcup_{j\geq 1} G_j \neq \mathbb{R}$.
- (E) Identify which of the following sets are compact and which are not, with an explanation (not necessarily a full formal proof.)
 - (i) $\{1/k : k \in \mathbb{N}\} \cup \{0\}$
 - (ii) $\{(x,y) \in \mathbb{R}^2 : |xy| \le 1\}$
 - (iii) $[2,3] \cup [4,5]$
- (F) Find an open cover of (0,1) which does not have a finite subcover.
- (G) Show that in the metric space Y = (0, 2), the set E = (0, 1] is closed and bounded, but E is not compact.

HINTS:

- (A)(ii) You can use \mathbb{Z} as your metric space.
- (C) For (i), use the definition of compactness. For (ii), use (i).
- (D) This is closely related to one of the textbook's theorems about compact sets.
- (F) Suppose you have a collection of *finitely* many open intervals, each having left endpoint strictly > 0. How can you find h such that none of (0, h] is covered by your intervals? Could your finite collection be an open cover of (0, 1)? How can you define an *infinite* collection of

open intervals, each having left endpoint strictly > 0, which together do form a cover of (0, 1)?

- (G) Theorem 2.33 may be useful.
- (22) Let $\epsilon > 0$ and $x, y \in \mathbb{R}^k$. Fill in the blank: if the coordinates satisfy $|y_i x_i| < \underline{\hspace{1cm}}$ for all i, then $|y x| < \epsilon$. Now use this together with the fact that \mathbb{Q} is dense in \mathbb{R} .