MATH 425a ASSIGNMENT 3 SOLUTIONS
 FALL 2016 Prof. Alexander

These solutions are for the individual use of Math 425a students and are not to be distributed outside that group.

Rudin Chapter 2:

(9)(a) Suppose $x \in E^{\circ}$. This means there is a neighborhood $N_{r}(x) \subset E$. By $2.19, N_{r}(x)$ is open, so given $y \in N_{r}(x)$ there is a radius s such that $N_{s}(y) \subset N_{r}(x) \subset E$. This shows that $y \in E^{\circ}$, and then since $y \in N_{r}(x)$ is arbitrary, we get that $N_{r}(x) \subset E^{\circ}$. Therefore E° is open.
(c) Suppose $G \subset E$ and G is open. If $x \in G$, then x has a neighborhood contained in G, so this neighborhood is also contained in E. This means $x \in E^{\circ}$. Thus $G \subset E^{\circ}$.

Handout:
(I) $\left\{\frac{1}{n}, 1+\frac{1}{n}, 2+\frac{1}{n}, 3+\frac{1}{n}: n \geq 2\right\}$ is one example. Its limit points are $\{0,1,2,3\}$.
(II)(a) If E is open and $x \in E$, there is a neighborhood $N_{r}(x) \subset E$. For all $s \leq r, N_{s}(x)$ contains points other than x and all these points are in E. For $s>r, N_{s}(x)$ contains $N_{r}(x)$ which in turn contains points other than x, and again these points are in E. This shows all neighborhoods of x contain points of E other than x, so x is a limit point of E.
(b) Given $n \in \mathbb{Z}$, the neighborhood $\left(n-\frac{1}{2}, n+\frac{1}{2}\right)$ contains no point of \mathbb{Z} other than n itself. Thus n is not a limit point of \mathbb{Z}.
(III) d_{1} is not a metric. For example, consider the points $0,1,2$. We have $d_{1}(0,1)=d_{1}(1,2)=$ 1 but $d_{1}(0,2)=8$, so $d_{1}(0,2)>d_{1}(0,1)+d_{1}(1,2)$ and the triangle inequality fails.
d_{2} is not a metric. For $x \in \mathbb{R}$ we have $d_{2}(x, x-1)=0$ but $x \neq x-1$.
d_{3} is a metric. It is clear that $d_{2}(x, x)=0$ and $d_{2}(x, y)=d_{2}(y, x)$ for all x, y. To prove the triangle inequality, first observe that for $a, b \geq 0$ we have $(\sqrt{a}+\sqrt{b})^{2}=a+2 \sqrt{a b}+b \geq a+b$ so $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$. Using this and the triangle inequality for Euclidean distance, we see that for $x, y, z \in \mathbb{R}$,

$$
\sqrt{|x-y|} \leq \sqrt{|x-z|+|z-y|} \leq \sqrt{|x-z|}+\sqrt{|z-y|}
$$

which shows the triangle inequality holds for d_{2}.
(IV)(a) Suppose x is not a limit point of any A_{i}. Then for each $i \leq n$, there is a radius $r_{i}>0$ such that $N_{r_{i}}(x)$ contains no points of A_{i} except possibly x itself. Let $r=\min \left\{r_{i}: i \leq n\right\}$. Then $N_{r}(x)$ contains no points of $\cup_{i=1}^{n} A_{i}$, except possibly x itself. Thus x is not a limit point of $\cup_{i=1}^{n} A_{i}$.
(b) Part (a) says "if $x \in\left(\cup_{i=1}^{n} A_{i}^{\prime}\right)^{c}$ then $x \in\left(B^{\prime}\right)^{c}$, or equivalently, $\left(\cup_{i=1}^{n} A_{i}^{\prime}\right)^{c} \subset\left(B^{\prime}\right)^{c}$. Taking complements shows this is also equivalent to $B^{\prime} \subset \cup_{i=1}^{n} A_{i}^{\prime}$.
(c) From (b) and the definition of B we have $B \cup B^{\prime} \subset\left(\cup_{i=1}^{n} A_{i}\right) \cup\left(\cup_{i=1}^{n} A_{i}^{\prime}\right)=\cup_{i=1}^{n}\left(A_{i} \cup A_{i}^{\prime}\right)$, or equivalently, $\bar{B} \subset \cup_{i=1}^{n} \bar{A}_{i}$.
(V) Choose $r, s>0$ with $r+s \leq d(x, y)$. Then for $z \in N_{r}(x)$, from the triangle inequality we have $d(z, y) \geq d(x, y)-d(x, z) \geq d(x, y)-r \geq s$, so $z \notin N_{s}(y)$. This shows $N_{r}(x) \cap N_{s}(y)=\emptyset$.
(VI) For each point $x \in F, x$ is isolated so there is a radius $\delta_{x}>0$ such that $N_{\delta_{x}}(x) \cap F=$ $\{x\}$. This mean that for $x, y \in F$ we have $d(x, y) \geq \delta_{x}$ and $d(x, y) \geq \delta_{y}$, and therefore $(*) d(x, y) \geq\left(\delta_{x}+\delta_{y}\right) / 2$. The neighborhoods $N_{\delta_{x}}(x)$ are not necessarily disjoint, but we can let $r_{x}=\delta_{x} / 2$. By $(*)$, we then have $d(x, y) \geq r_{x}+r_{y}$ for all x, y in F with $x \neq y$. By the solution of problem (II), this shows $N_{r_{x}}(x)$ and $N_{r_{y}}(y)$ are disjoint for all $x \neq y$ in F.
(VII) Since $A \subset F$ and F is closed, we have $A^{\prime} \subset F^{\prime} \subset F$, so $\bar{A}=A \cup A^{\prime} \subset F$.
(VIII)(a) $E_{n}=[n, \infty)$ is one example.
(b) $E_{1}=\emptyset, E_{n}=\left[\frac{1}{n}, 1-\frac{1}{n}\right]$ for $n \geq 2$ is one example. The union is $(0,1)$ which is not closed.

