MATH 425a ASSIGNMENT 2 SOLUTIONS
 FALL 2016 Prof. Alexander

These solutions are for the individual use of Math 425a students and are not to be distributed outside that group.

Rudin Chapter 1:

$$
\begin{align*}
|x+y|^{2}+|x-y|^{2} & =(x+y) \cdot(x+y)+(x-y) \cdot(x-y) \tag{17}\\
& =(x \cdot x+y \cdot x+x \cdot y+y \cdot y)+(x \cdot x-y \cdot x-x \cdot y+y \cdot y) \\
& =2 x \cdot x+2 y \cdot y \\
& =2|x|^{2}+2|y|^{2} .
\end{align*}
$$

To interpret this, consider the parallelogram with vertices $0, x, y, x+y$. Its diagonals have lengths $|x-y|,|x+y|$, so the equality says the sum of the squares of the two diagonals is the sum of the squares of the four sides.

Chapter 2:
(3) Since the set \mathbb{A} of algebraic real numbers is countable and \mathbb{R} is not, we have $\mathbb{A} \neq \mathbb{R}$, so some real numbers aren't in \mathbb{A}.

Handout:
(A) If $z \in A$ then $|z+1| \leq|z|+1 \leq \alpha+1$. This says that $\alpha+1$ is an upper bound for the set $E=\{|z+1|: z \in A\}$. Since the sup is the least upper bound, this means $\sup E \leq \alpha+1$.
(B)(a) A_{3} is the Cartesian product of countable sets, so it is countable. B_{3} is an infinite subset of A_{3} so it is also countable, by 2.8.
(b) f is not 1-to- 1 since $f((a, b, c))=f((b, a, c)) . f$ is onto, since given a set $\{a, b, c\}$, we can put its elements in some order to make a tuple in B_{3}, say $(a, b, c) \in B_{3}$, and then $f((a, b, c))=\{a, b, c\}$.
(c) B_{3} is countable by (a), and $C_{3}=f\left(B_{3}\right)$ by (b), so by a theorem from lecture, C_{3} is at most countable. Since C_{3} is not finite, it must be countable.
(d) Let $C_{n}=\{$ all n-element subsets of $\mathbb{Z}\}$. The same argument as the above for C_{3} shows that C_{n} is countable. Since $C=\cup_{n=1}^{\infty} C_{n}$, it follows from 2.12 that C is countable.
(C) For the intersection, consider $[0,1]$ and $[1,2]$. These are uncountable but the intersection is the single point $\{1\}$ which is not uncountable.

For the union, suppose A, B are uncountable. If $A \cup B$ were finite, then its subsets A and B would be finite, a contradiction. If $A \cup B$ were countable, then A would be an infinite subset of the countable set $A \cup B$, hence countable, again a contradiction. Therefore $A \cup B$ must be uncountable.
(D)(a) Let A_{N} be the set of sequences which are 0 after time N, that is,

$$
A_{N}=\left\{\left(z_{1}, z_{2}, \ldots\right): z_{n} \in\{0,1,2,3\} \text { for all } n, z_{n}=0 \text { for all } n>N\right\}
$$

Then A_{N} is finite (in fact it has 4^{N} elements), since an element of A_{N} is determined by specifying each of the first N coordinates, with 4 choices for each coordinates. The set $A=\{$ all terminating sequences of 0 's, 1's, 2's, and 3's $\}$ is the same as $\cup_{N \geq 1} A_{N}$, so by the Corollary to Theorem $2.12, A$ is at most countable. Since A is infinite, it must be countable.
(b) Similarly to (a), we can let B_{N} be the set of sequences which are 0 after time N, that is,

$$
B_{N}=\left\{\left(z_{1}, z_{2}, \ldots\right): z_{n} \in \mathbb{Z} \text { for all } n, z_{n}=0 \text { for all } n>N\right\}
$$

We can make a bijection between B_{N} and \mathbb{Z}^{N}, defining $f: \mathbb{Z}^{N} \rightarrow B_{N}$ by $f\left(z_{1}, \ldots, z_{N}\right)=$ $\left(z_{1}, \ldots, z_{N}, 0,0, \ldots\right)$. By Theorem $2.13, \mathbb{Z}^{N}$ is countable; since we have a bijection, so is B_{N}. The set $B=\{$ all terminating sequences of integers $\}$ is the same as $\cup_{N \geq 1} B_{N}$, which is countable by Theorem 2.12 .
(E) Since \mathbb{C} has the same metric as \mathbb{R}^{2}, we know the triangle inequality: $\left|w_{1}+w_{2}\right| \leq\left|w_{1}\right|+\left|w_{2}\right|$. So the inequality is valid for the starting value $n=2$. We can proceed by induction. Suppose the inequality

$$
(*) \quad\left|w_{1}+\cdots+w_{n}\right| \leq\left|w_{1}\right|+\cdots+\left|w_{n}\right|
$$

is true for some $n \geq 2$. From $\left(^{*}\right)$ for two complex numbers, we know that

$$
\left|w_{1}+\cdots+w_{n}+w_{n+1}\right| \leq\left|w_{1}+\cdots+w_{n}\right|+\left|w_{n+1}\right|
$$

Then from $\left({ }^{*}\right)$ for n complex numbers, we get

$$
\left|w_{1}+\cdots+w_{n}\right|+\left|w_{n+1}\right| \leq\left|w_{1}\right|+\cdots+\left|w_{n}\right|+\left|w_{n+1}\right|
$$

so $\left(^{*}\right)$ is true for $n+1$. Thus by induction it is true for all n.
(F) To show $|a| \leq|x-y|$ for some a, we show $a \leq|x-y|$ and $-a \leq|x-y|$. In the present case, a is $|x|-|y|$. From the triangle inequality we have

$$
\begin{aligned}
& |x| \leq|x-y|+|y| \quad \text { so } \quad|x|-|y| \leq|x-y| \\
& |y| \leq|y-x|+|x| \quad \text { so } \quad|y|-|x| \leq|x-y|
\end{aligned}
$$

Putting these together shows $||x|-|y|| \leq|x-y|$.
(G) Note that $A \backslash B=\{x \in A: x$ is rational $\}$, which is at most countable since it's a subset of \mathbb{Q}. If B were at most countable, then $A=B \cup(A \backslash B)$ would be the union of two at-mostcountable sets, contradicting the assumed uncountability of A. Thus B must be uncountable.

