MATH 425a ASSIGNMENT 2 SOLUTIONS
FALL 2016 Prof. Alexander

These solutions are for the individual use of Math 425a students and are not to be distributed
outside that group.

Rudin Chapter 1:
(17)

lz+yf e -y =(z+y) (e+y) + (@ -y (r—y)
=@ vty stz y+yy+@ -y r-—c-yty-y
=2r-x+2y-y
= 2[z|* + 2[y|*.

To interpret this, consider the parallelogram with vertices 0, x,y,x + y. Its diagonals have
lengths |z — y|, |z + y|, so the equality says the sum of the squares of the two diagonals is
the sum of the squares of the four sides.

Chapter 2:

(3) Since the set A of algebraic real numbers is countable and R is not, we have A # R, so
some real numbers aren’t in A.

Handout:

(A) If z € A then |z + 1| < |2| +1 < a+ 1. This says that a + 1 is an upper bound for the
set B = {|z+1|: 2z € A}. Since the sup is the least upper bound, this means sup £ < a+ 1.

(B)(a) Ajs is the Cartesian product of countable sets, so it is countable. Bj is an infinite
subset of A3 so it is also countable, by 2.8.

(b) f is not 1-to-1 since f((a,b,c)) = f((b,a,c)). f is onto, since given a set {a,b,c},
we can put its elements in some order to make a tuple in Bs, say (a,b,c) € Bs, and then
f((a,b, c)) = {a,b,c}.

(c) B3 is countable by (a), and C3 = f(Bs) by (b), so by a theorem from lecture, Cj is
at most countable. Since Cj is not finite, it must be countable.

(d) Let C,, = {all n-element subsets of Z}. The same argument as the above for C'3 shows
that C), is countable. Since C' = U2 ,C,,, it follows from 2.12 that C' is countable.

(C) For the intersection, consider [0, 1] and [1,2]. These are uncountable but the intersection
is the single point {1} which is not uncountable.



For the union, suppose A, B are uncountable. If A U B were finite, then its subsets A
and B would be finite, a contradiction. If AU B were countable, then A would be an infinite
subset of the countable set A U B, hence countable, again a contradiction. Therefore AU B
must be uncountable.

(D)(a) Let Ay be the set of sequences which are 0 after time N, that is,
Ay ={(z1,22,...) : 2, € {0,1,2,3} for all n,z, =0 for all n > N}.

Then Ay is finite (in fact it has 4V elements), since an element of Ay is determined by
specifying each of the first N coordinates, with 4 choices for each coordinates. The set
A = { all terminating sequences of 0’s, 1’s, 2’s, and 3’s } is the same as Uy>1 Ay, so by the
Corollary to Theorem 2.12, A is at most countable. Since A is infinite, it must be countable.

(b) Similarly to (a), we can let By be the set of sequences which are 0 after time N, that
is,

By ={(z1,22,...) : 2z, € Z for all n, z, =0 for all n > N}.

We can make a bijection between By and ZY, defining f : ZV¥ — By by f(z1,...,2n8) =
(21,...,2n5,0,0,...). By Theorem 2.13, Z" is countable; since we have a bijection, so is
By. The set B = { all terminating sequences of integers } is the same as Uy>; By, which is
countable by Theorem 2.12.

(E) Since C has the same metric as R?, we know the triangle inequality: |w;+ws| < |w;|+]ws.
So the inequality is valid for the starting value n = 2. We can proceed by induction. Suppose
the inequality
(6)  Jwi e wn| < w4 fw
is true for some n > 2. From (*) for two complex numbers, we know that
|w1+"'+wn+wn+1| S |w1++wn|+|wn+1|
Then from (*) for n complex numbers, we get
wi + - W]+ |waga ] < Jwi| + -+ |wa] + [waal,

so (*) is true for n + 1. Thus by induction it is true for all n.

(F) To show |a| < |z — y| for some a, we show a < |z — y| and —a < |z — y|. In the present
case, a is |z| — |y|. From the triangle inequality we have

2] <z =yl + [yl so [z =yl <|o—yl,
yl <ly —al+ 2] so |yl —[z] <z —yl.
Putting these together shows ||z| — [y|| < |z — y|.

(G) Note that A\B = {x € A : z is rational}, which is at most countable since it’s a subset
of Q. If B were at most countable, then A = BU (A\B) would be the union of two at-most-
countable sets, contradicting the assumed uncountability of A. Thus B must be uncountable.



