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These solutions are for the individual use of Math 425a students and are not to be distributed
outside that group.

Rudin Chapter 1:

(17)

|x+ y|2 + |x− y|2 = (x+ y) · (x+ y) + (x− y) · (x− y)

= (x · x+ y · x+ x · y + y · y) + (x · x− y · x− x · y + y · y)

= 2x · x+ 2y · y
= 2|x|2 + 2|y|2.

To interpret this, consider the parallelogram with vertices 0, x, y, x + y. Its diagonals have
lengths |x − y|, |x + y|, so the equality says the sum of the squares of the two diagonals is
the sum of the squares of the four sides.

Chapter 2:

(3) Since the set A of algebraic real numbers is countable and R is not, we have A 6= R, so
some real numbers aren’t in A.

Handout:

(A) If z ∈ A then |z + 1| ≤ |z|+ 1 ≤ α + 1. This says that α + 1 is an upper bound for the
set E = {|z+ 1| : z ∈ A}. Since the sup is the least upper bound, this means supE ≤ α+ 1.

(B)(a) A3 is the Cartesian product of countable sets, so it is countable. B3 is an infinite
subset of A3 so it is also countable, by 2.8.

(b) f is not 1-to-1 since f
(
(a, b, c)

)
= f

(
(b, a, c)

)
. f is onto, since given a set {a, b, c},

we can put its elements in some order to make a tuple in B3, say (a, b, c) ∈ B3, and then
f
(
(a, b, c)

)
= {a, b, c}.

(c) B3 is countable by (a), and C3 = f(B3) by (b), so by a theorem from lecture, C3 is
at most countable. Since C3 is not finite, it must be countable.

(d) Let Cn = {all n-element subsets of Z}. The same argument as the above for C3 shows
that Cn is countable. Since C = ∪∞n=1Cn, it follows from 2.12 that C is countable.

(C) For the intersection, consider [0, 1] and [1, 2]. These are uncountable but the intersection
is the single point {1} which is not uncountable.
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For the union, suppose A,B are uncountable. If A ∪ B were finite, then its subsets A
and B would be finite, a contradiction. If A∪B were countable, then A would be an infinite
subset of the countable set A ∪B, hence countable, again a contradiction. Therefore A ∪B
must be uncountable.

(D)(a) Let AN be the set of sequences which are 0 after time N , that is,

AN = {(z1, z2, . . . ) : zn ∈ {0, 1, 2, 3} for all n, zn = 0 for all n > N}.
Then AN is finite (in fact it has 4N elements), since an element of AN is determined by
specifying each of the first N coordinates, with 4 choices for each coordinates. The set
A = { all terminating sequences of 0’s, 1’s, 2’s, and 3’s } is the same as ∪N≥1AN , so by the
Corollary to Theorem 2.12, A is at most countable. Since A is infinite, it must be countable.

(b) Similarly to (a), we can let BN be the set of sequences which are 0 after time N , that
is,

BN = {(z1, z2, . . . ) : zn ∈ Z for all n, zn = 0 for all n > N}.
We can make a bijection between BN and ZN , defining f : ZN → BN by f(z1, . . . , zN) =
(z1, . . . , zN , 0, 0, . . . ). By Theorem 2.13, ZN is countable; since we have a bijection, so is
BN . The set B = { all terminating sequences of integers } is the same as ∪N≥1BN , which is
countable by Theorem 2.12.

(E) Since C has the same metric as R2, we know the triangle inequality: |w1+w2| ≤ |w1|+|w2|.
So the inequality is valid for the starting value n = 2. We can proceed by induction. Suppose
the inequality

(∗) |w1 + · · ·+ wn| ≤ |w1|+ · · ·+ |wn|
is true for some n ≥ 2. From (*) for two complex numbers, we know that

|w1 + · · ·+ wn + wn+1| ≤ |w1 + · · ·+ wn|+ |wn+1|.
Then from (*) for n complex numbers, we get

|w1 + · · ·+ wn|+ |wn+1| ≤ |w1|+ · · ·+ |wn|+ |wn+1|,
so (*) is true for n+ 1. Thus by induction it is true for all n.

(F) To show |a| ≤ |x− y| for some a, we show a ≤ |x− y| and −a ≤ |x− y|. In the present
case, a is |x| − |y|. From the triangle inequality we have

|x| ≤ |x− y|+ |y| so |x| − |y| ≤ |x− y|,
|y| ≤ |y − x|+ |x| so |y| − |x| ≤ |x− y|.

Putting these together shows
∣∣|x| − |y|∣∣ ≤ |x− y|.

(G) Note that A\B = {x ∈ A : x is rational}, which is at most countable since it’s a subset
of Q. If B were at most countable, then A = B ∪ (A\B) would be the union of two at-most-
countable sets, contradicting the assumed uncountability of A. Thus B must be uncountable.
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