MATH 425a MIDTERM EXAM 2 SOLUTIONS
 Fall 2016
 Prof. Alexander

(1) (a) (See text)
(b) $\lim _{x \rightarrow p} f(x)=q$ means for every $\epsilon>0$ there exists $\delta>0$ such that $x \in E, 0<$ $d(x, p)<\delta \Longrightarrow d(f(x), f(p))<\epsilon$.
(2)(a)

$$
\left|(-1)^{n} \frac{2.5^{n}}{n^{2.5}}\right|^{1 / n}=\frac{2.5}{\left(n^{1 / n}\right)^{2.5}} \rightarrow 2.5
$$

so $R=1 / 2.5=0.4$.
(b) Since $a_{n} \rightarrow 0,\left\{a_{n}\right\}$ is bounded: there exists M such that $\left|a_{n}\right| \leq M$ for all n. Hence $\left|a_{n}\right| / n^{p} \leq M / n^{p}$, and $\sum \frac{M}{n^{p}}$ converges since $p>1$, so $\sum a_{n} / n^{p}$ converges by the comparison test.
(c) $3^{n} / 4^{n} \rightarrow 0$ so there exists N such that

$$
n \geq N \Longrightarrow 3^{n}<\frac{1}{2} 4^{n} \Longrightarrow 0<\frac{1}{4^{n}-3^{n}}<\frac{1}{4^{n}-\frac{1}{2} \cdot 4^{n}}=\frac{2}{4^{n}}
$$

Since $\sum 2 / 4^{n}$ converges, $\sum 1 /\left(4^{n}-3^{n}\right)$ converges by the comparison test.
(d) Let $a_{n}=\sin n-\sin (n-1)$. In the sum $\sum_{k=1}^{n}(\sin k-\sin (k-1))$, all terms cancel except $\sin n$ and $\sin 0$: the sum is $\sin n-\sin 0=\sin n$. Therefore the partial sums of $\sum_{n} a_{n}$ are bounded. Also $1 / n \searrow 0$, so by Theorem 3.42, $\sum \frac{1}{n} a_{n}$ converges.
(e) Let $a_{n}=\left(\frac{2}{3}\right)^{\log _{2} n}$. Use Cauchy Condensation Test: $a_{2^{k}}=\left(\frac{2}{3}\right)^{k}$ so $\sum_{k} 2^{k} a_{2^{k}}=$ $\sum_{k} 2^{k}\left(\frac{2}{3}\right)^{k}=\sum_{k}\left(\frac{4}{3}\right)^{k}$ which diverges since $\left(\frac{4}{3}\right)^{k} \nrightarrow 0$. Therefore $\sum_{n} a_{n}$ diverges.
(3)(a) $\left\{p_{n}\right\}$ is also a sequence is the compact set \bar{F}, so it has a subsequence converging in \bar{F}. Therefore this subsequence is Cauchy.
(b) FIRST SOLUTION: Let $E=\left\{x_{n}: n \geq 1\right\}$ and $F=\left\{f\left(x_{n}\right): n \geq 1\right\}$ (both viewed as sets, not sequences.) Since x is a limit point of E, there is a subsequence $x_{n_{k}} \rightarrow x$, by a proposition from lecture. By continuity of f, we have $f\left(x_{n_{k}}\right) \rightarrow f(x)$. Since all x_{n} 's are distinct, x cannot appear infinitely often in the sequence $\left\{x_{n}\right\}$; since f is one-to-one, this means $f(x)$ cannot appear infinitely often in the sequence $\left\{f\left(x_{n}\right)\right\}$. Therefore by the same proposition, $f(x)$ is a limit point of F.

SECOND SOLUTION: Let $\epsilon>0$. There exists $\delta>0$ such that $d\left(x_{n}, x\right)<\delta \Longrightarrow$ $d\left(f\left(x_{n}\right), f(x)\right)<\epsilon$. Since all x_{n} 's are distinct, there is at most one n_{0} with $x_{n_{0}}=x$. Since x is a limit point of $\left\{x_{n}: n \geq 1\right\}$, this means we can find an $n>n_{0}$ with $0<d\left(x_{n}, x\right)<\delta$, and since f is one-to-one, this means $0<d\left(f\left(x_{n}\right), f(x)\right)<\epsilon$. Since ϵ is arbitrary, this means $f(x)$ is a limit point of $\left\{f\left(x_{n}\right): n \geq 1\right\}$.
(4)(a) Given $\epsilon>0$, let $\delta=(\epsilon / C)^{1 / \alpha}$. Then $|x-y|<\delta \Longrightarrow|f(x)-f(y)| \leq C|x-y|^{\alpha} \leq$ $C \delta^{\alpha}=\epsilon$. This shows f is uniformly continuous.
(b) f is continuous at each $p \in E$ (note $0 \notin E$), meaning f is continuous on E.

For uniform continuity, let $0<\epsilon<1$. Given $0<\delta<1$, choose x, y with $-\frac{\delta}{2}<x<0$ and $0<y<\frac{\delta}{2}$. Then $|y-x|<\delta$, but

$$
|f(y)-f(x)|=|(y+1)-(x+3)|=|y-x-2| .
$$

Provided we choose x, y close enough to 0 , we have $|y-x-2|>1>\epsilon$. Thus no $0<\delta<1$ works for all x, y, so no $\delta>0$ works, meaning f is not uniformly continuous.

