MATH 425a MIDTERM EXAM 2 November 4, 2016 Prof. Alexander

		Problem	Points	Score
Last Name:	_	1	23	
First Name:	_	2	31	
USC ID:		3	21	
Signature:		4	25	
		Total	100	

Notes:

- (1) Use the backs of the sheets if you need more room.
- (2) If you can't do, say, part (a) of a problem, you can assume it and do parts (b), (c), etc.
- (3) The list of convergence tests is on the last page.

(1)((16 points)(a) Prove the following part of Theorem 4.8: for $f : X \to Y$, if $f^{-1}(V)$ is open in X for every open set V in Y, then f is continuous. (Note this is the opposite direction from the sample midterm problem.)

(b) Suppose X, Y are metric spaces, $E \subset X$, $f : E \to Y$, and $p \in E'$. Give the definition of $\lim_{x\to p} f(x) = q$.

(2)(31 points)(a) Find the radius of convergence for $\sum (-1)^n \frac{2.5^n}{n^{2.5}} z^n$.

(b) If $a_n \to 0$ and p > 1 show that $\sum \frac{a_n}{n^p}$ converges. (We don't assume $a_n \ge 0$.)

Establish convergence or divergence of the following 3 series: 1

(c)
$$\sum \frac{1}{4^n - 3^n}$$

(d) $\sum_{n\geq 1} \frac{\sin(n) - \sin(n-1)}{n}$. HINT: This is not an alternating series. Consider properties of $\sum_{n} (\sin(n) - \sin(n-1))$. No trig identities, or computations with trig functions, are needed.

(e) $\sum \left(\frac{2}{3}\right)^{\log_2 n}$. (Here the 2 means base-2 log.)

(3)(21 points) Two unrelated short problems:

(a) Suppose $\{p_n\}$ is a sequence in F, and \overline{F} is compact. Show that $\{p_n\}$ has a Cauchy subsequence.

(b) Suppose $f: X \to Y$ is a one-to-one continuous function, $\{x_n\}$ is a sequence of distinct points in X and x is a limit point of the set $\{x_n : n \ge 1\}$. Show that f(x) is a limit point of $\{f(x_n) : n \ge 1\}$.

(4)(25 points)(a) A function $g : \mathbb{R} \to \mathbb{R}$ is said to satisfy a *Lipschitz condition* if there exist $C, \alpha > 0$ such that $|g(x) - g(y)| \leq C|x - y|^{\alpha}$ for all x, y. Show that such a g is uniformly continuous.

(b) Define $E = [-1,0) \cup (0,1]$ and define $f: E \to \mathbb{R}$ by

$$f(x) = \begin{cases} x+3, & \text{if } x \in [-1,0) \\ x+1, & \text{if } x \in (0,1] \end{cases}$$

Is f continuous on E? Is f uniformly continuous on E? Prove your answer for "uniformly continuous." For "continuous" you need only give a brief informal justification. HINT: The domain of f is important.

REMINDER LIST-TESTS FOR CONVERGENCE

(1) Cauchy criterion ($\{s_n\}$ must be a Cauchy sequence, where s_n is the *n*th partial sum)

- (2) Comparison test
- (3) Cauchy condensation test, 3.27
- (4) Root test
- (5) Ratio test
- (6) Alternating series test
- (7) Test given by Theorem 3.42 for series $\sum_n a_n B_n$