MATH 425a MIDTERM EXAM 1 September 28, 2016 Prof. Alexander

Last Name:	_	
First Name:		
USC ID:		
Signature:		

Problem	Points	Score
1	23	
2	26	
3	22	
4	29	
Total	100	

Notes:

- (1) Use the backs of the sheets if you need more room.
- (2) If you can't do, say, part (a) of a problem, you can assume it and do parts (b), (c), etc.

- (1)(23 points)(a) Prove Theorem 1.33e: for all complex numbers z,w, we have $|z+w| \le |z| + |w|.$
 - (b) For a subset E of a metric space X, state what it means for E to be bounded.

- (2)(26 points) Suppose K is compact, $G \subset K$, and G is open.
- (a) Which of the following properties must hold for $G^c \cap K$? (More than one may be correct.) For the property(s) that must hold, say how you know in a sentence or two; full formal proof not required. For the property(s) that do not have to hold, you need not give justification.
 - (i) open
 - (ii) closed
 - (iii) compact.
- (b) Suppose $E \subset K$ with infinitely many points of E outside G. Show that E has a limit point outside G. HINT: What property from (a) is relevant?

- (3)(22 points)(a) State what it means for a set C to be *countable*. Give your definition in words only (except for the name C of the set), no mathematical notation.
- (b)(15 pts) Suppose $A_1, A_2, ...$ are subsets of \mathbb{R} , and for each n the complement A_n^c is countable. Show that $B = \bigcap_{n \geq 1} A_n$ is uncountable.

- (4)(29 points)(a) State what it means for a point p to be an interior point of a set E.
- (b) Show that for sets A, B in a metric space, $A^{\circ} \cap B^{\circ} \subset (A \cap B)^{\circ}$. (Here A° denotes the interior of A.)
- (c) Consider the corresponding statement for an infinite sequence of sets: $\bigcap_{i\geq 1} A_i^{\circ} \subset (\bigcap_{i\geq 1} A_i)^{\circ}$. Give an example to show this can be false. HINT: Nested intervals in $\mathbb R$ can work.