Zeros of the derivatives of random polynomials and random entire functions

Sneha Dey Subramanian

University of California, Irvine

(joint work with Robin Pemantle, University of Pennsylvania)

December 6, 2014

Overview

- 2 Critical points of a complex polynomial with I.I.D zeros
- Ocefficients of a random polynomial with Rademacher zeroes
- 4 Random entire function vanishing at Poisson points

4 AR & 4 E & 4 E &

3

イロト イヨト イヨト イヨト

• Create a random polynomial of degree *n* by placing some probability measure on the space of all complex polynomials of degree *n*.

不同 トイモトイモ

- Create a random polynomial of degree *n* by placing some probability measure on the space of all complex polynomials of degree *n*.
- Most obvious kind of random polynomial is the one where the coefficients are independent with some distribution:

- Create a random polynomial of degree *n* by placing some probability measure on the space of all complex polynomials of degree *n*.
- Most obvious kind of random polynomial is the one where the coefficients are independent with some distribution:

$$p(z) = c_0 + c_1 z + c_2 z^2 + \cdots + c_n z^n$$

where c_i 's are independent random variables.

- Create a random polynomial of degree *n* by placing some probability measure on the space of all complex polynomials of degree *n*.
- Most obvious kind of random polynomial is the one where the coefficients are independent with some distribution:

$$p(z) = c_0 + c_1 z + c_2 z^2 + \cdots + c_n z^n$$

where c_i 's are independent random variables.

• Another class of random polynomials arise as the characteristic polynomials of random matrices.

- Create a random polynomial of degree *n* by placing some probability measure on the space of all complex polynomials of degree *n*.
- Most obvious kind of random polynomial is the one where the coefficients are independent with some distribution:

$$p(z) = c_0 + c_1 z + c_2 z^2 + \cdots + c_n z^n$$

where c_i 's are independent random variables.

- Another class of random polynomials arise as the characteristic polynomials of random matrices.
- Traditionally, we ask questions about the zeros of these random polynomials.

不同下 不至下 不至下

Random Polynomials - History

 Mark Kac (1943) showed that, if the coefficients c_j's are IID standard normal (real), then the expected number of real zeros are ~ ²/_π log n.

Random Polynomials - History

- Mark Kac (1943) showed that, if the coefficients c_j's are IID standard normal (real), then the expected number of real zeros are ~ ²/_π log n.
- More recently, Kabluchko and Zaporozhets (2012) derived the asymptotic empirical distribution of the zeros of elliptic random polynomials and Littlewood-Offord random polynomials under a mild condition.

Sneha Dey Subramanian (UC Irvine) Critical points of random analytic functions

3

イロト イポト イヨト イヨト

• Traditional ways to think of a random analytic function

$$f(z)=\sum_{n=0}^{\infty}a_nz^n,$$

where a_i 's are independent random variables.

• Traditional ways to think of a random analytic function

$$f(z)=\sum_{n=0}^{\infty}a_nz^n,$$

where a_j 's are independent random variables.

Gaussian analytic functions on some domain Λ: A function f such that (f(z₁), · · · , f(z_n)) has a mean zero complex Gaussian distribution for every n ≥ 1 and every z₁, · · · , z_n ∈ Λ.

Random Analytic Functions - History

• The number of zeros of $f(z) = \sum a_n z^n$, where a_n are i.i.d. complex Gaussian, in a disk of radius r about the origin has the same distribution as the sum of independent $\{0, 1\}$ -valued random variables X_k , where $\mathbb{P}(X_k = 1) = r^{2k}$ - Peres and Virág (2005).

・ 同 ト ・ ヨ ト ・ ヨ ト

Random Analytic Functions - History

- The number of zeros of $f(z) = \sum a_n z^n$, where a_n are i.i.d. complex Gaussian, in a disk of radius r about the origin has the same distribution as the sum of independent $\{0, 1\}$ -valued random variables X_k , where $\mathbb{P}(X_k = 1) = r^{2k}$ Peres and Virág (2005).
- Kabluchko and Zaporozhets (2012) derived the asymptotic empirical distribution of the zeros of flat analytic functions and hyperbolic analytic functions.

くほと くほと くほと

QUESTION - A new class of random polynomials and random entire functions

- QUESTION A new class of random polynomials and random entire functions
- Suppose, instead of the traditional approach of having a probability measure on the coefficients of the polynomial / power series, we now consider probability measures on the zeros.

- QUESTION A new class of random polynomials and random entire functions
- Suppose, instead of the traditional approach of having a probability measure on the coefficients of the polynomial / power series, we now consider probability measures on the zeros.
- Can we say anything about the location or distribution of critical points of these functions?

- QUESTION A new class of random polynomials and random entire functions
- Suppose, instead of the traditional approach of having a probability measure on the coefficients of the polynomial / power series, we now consider probability measures on the zeros.
- Can we say anything about the location or distribution of critical points of these functions?
- What about their coefficients?

Our Random Polynomials

Sneha Dey Subramanian (UC Irvine) Critical points of random analytic functions

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Our Random Polynomials

Random polynomial of degree n

$$p_n(z) = (z - Z_1)(z - Z_2)...(z - Z_n),$$

where Z_i 's are independent random variables.

3

A (10) A (10)

(日) (同) (三) (三)

3

If $\{Z_n\}_n$ is a sequence of random variables (assume that, with probability 1 there are no cluster points), then we can use Weierstrass Product Formula to construct an entire function which vanishes at exactly these points.

If $\{Z_n\}_n$ is a sequence of random variables (assume that, with probability 1 there are no cluster points), then we can use Weierstrass Product Formula to construct an entire function which vanishes at exactly these points.

But there is a small problem:

If $\{Z_n\}_n$ is a sequence of random variables (assume that, with probability 1 there are no cluster points), then we can use Weierstrass Product Formula to construct an entire function which vanishes at exactly these points.

But there is a small problem: there are infinitely many entire functions that have the same zeros!

3

A (10) F (10)

Suppose $Z_1, Z_2, ...$ are chosen I.I.D. using some probability measure μ from the complex plane. Define

$$p_n(z) = (z - Z_1)(z - Z_2)...(z - Z_n).$$

不同下 不至下 不至下

Suppose $Z_1, Z_2, ...$ are chosen I.I.D. using some probability measure μ from the complex plane. Define

$$p_n(z) = (z - Z_1)(z - Z_2)...(z - Z_n).$$

Let $y_1^{(n)}, y_2^{(n)}, ..., y_{n-1}^{(n)}$ be the critical points of p_n and $\mathcal{Z}(f)$ be the empirical distribution of the roots of a function f.

Suppose $Z_1, Z_2, ...$ are chosen I.I.D. using some probability measure μ from the complex plane. Define

$$p_n(z) = (z - Z_1)(z - Z_2)...(z - Z_n).$$

Let $y_1^{(n)}, y_2^{(n)}, ..., y_{n-1}^{(n)}$ be the critical points of p_n and $\mathcal{Z}(f)$ be the empirical distribution of the roots of a function f. Thus,

$$\mathcal{Z}(p_n) = \frac{1}{n} \sum_{j=1}^n \delta_{Z_j}, \text{ and, } \mathcal{Z}(p'_n) = \frac{1}{n-1} \sum_{j=1}^{n-1} \delta_{y_j^{(n)}}.$$

Results for finite 1-energy measures

Theorem (Pemantle and Rivin, 2011)

If μ has finite 1-energy (that is, if μ satisfies the condition $\mathbb{E}\left(\frac{1}{|Z-W|}\right) < \infty$, where $Z, W \stackrel{i.i.d.}{\sim} \mu$), then, $\mathcal{Z}(p'_n)$ converges weakly in probability to μ .

Results for finite 1-energy measures

Theorem (Pemantle and Rivin, 2011)

If μ has finite 1-energy (that is, if μ satisfies the condition $\mathbb{E}\left(\frac{1}{|Z-W|}\right) < \infty$, where $Z, W \stackrel{i.i.d.}{\sim} \mu$), then, $\mathcal{Z}(p'_n)$ converges weakly in probability to μ .

• Pemantle and Rivin, in the same paper, conjectured that this theorem holds for all probability measures μ on the complex plane.

Results for finite 1-energy measures

Theorem (Pemantle and Rivin, 2011)

If μ has finite 1-energy (that is, if μ satisfies the condition $\mathbb{E}\left(\frac{1}{|Z-W|}\right) < \infty$, where $Z, W \stackrel{i.i.d.}{\sim} \mu$), then, $\mathcal{Z}(p'_n)$ converges weakly in probability to μ .

- Pemantle and Rivin, in the same paper, conjectured that this theorem holds for all probability measures μ on the complex plane.
- μ fails to have finite 1-energy if concentrated on a set of dimension 1 (for example, on a circle).

過 ト イヨ ト イヨト

Results for measures on the unit circle

Theorem (S., 2012)

Suppose μ is any probability measure on the unit circle, and $Z_1, Z_2, ...$ are chosen I.I.D. from μ with $p_n(z) = (z - Z_1)(z - Z_2)...(z - Z_n)$. Then, the empirical distribution of the critical points of p_n , $\mathcal{Z}(p'_n)$, converges weakly in probability to μ .

Sneha Dey Subramanian (UC Irvine) Critical points of random analytic functions

Results on distributions on the unit circle

Proposition (S., 2012)

Let $z_1, z_2, ... \in \mathbb{C}$ with $p_n(z) = (z - z_1)(z - z_2)...(z - z_n)$. Let us denote the critical points of p_n by $y_1^{(n)}, y_2^{(n)}, ..., y_{n-1}^{(n)}$. Also, suppose z_j 's satisfy the property

$$\frac{z_1^k + z_2^k + \ldots + z_n^k}{n} \longrightarrow c_k, \forall k \in \mathbb{N},$$

where $|c_k| < \infty, \forall k$. Then,

$$rac{(y_1^{(n)})^k+(y_2^{(n)})^k+...+(y_{n-1}^{(n)})^k}{n-1}\longrightarrow c_k, orall k\in\mathbb{N}.$$

Results on distributions on the unit circle

Generalization of the theorem in [Pemantle and Rivin, 2011], about convergence of $\mathcal{Z}(p'_n)$ in probability to the circle:

Lemma (S., 2012)

If μ is any probability measure on the unit circle, then the empirical distribution of the critical points, $\mathcal{Z}(p'_n)$, converges to the unit circle in probability.

Results on distributions on the unit circle

Generalization of the theorem in [Pemantle and Rivin, 2011], about convergence of $\mathcal{Z}(p'_n)$ in probability to the circle:

Lemma (S., 2012)

If μ is any probability measure on the unit circle, then the empirical distribution of the critical points, $\mathcal{Z}(p'_n)$, converges to the unit circle in probability.

In fact, if μ is not uniform, this convergence is an almost sure convergence.
Any probability measure μ ?

Theorem (Kabluchko, 2012)

Suppose μ is any probability measure on \mathbb{C} , and $Z_1, Z_2, ...$ are chosen I.I.D. from μ with $p_n(z) = (z - Z_1)(z - Z_2)...(z - Z_n)$. Then, the empirical distribution of the critical points of p_n , $\mathcal{Z}(p'_n)$, converges weakly in probability to μ .

Sneha Dey Subramanian (UC Irvine) Critical points of random analytic functions

3

(日) (同) (三) (三)

Suppose $X_j, j \in \mathbb{N}$, are I.I.D. with $\mathbb{P}(X_j = +1) = \mathbb{P}(X_j = -1) = \frac{1}{2}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Suppose $X_j, j \in \mathbb{N}$, are I.I.D. with $\mathbb{P}(X_j = +1) = \mathbb{P}(X_j = -1) = \frac{1}{2}$.

Let $f_N(z) = \prod_{j=1}^N \left(1 - \frac{z}{X_j}\right)$ - a random polynomial vanishing at X_j 's.

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Suppose $X_j, j \in \mathbb{N}$, are I.I.D. with $\mathbb{P}(X_j = +1) = \mathbb{P}(X_j = -1) = \frac{1}{2}$.

Let $f_N(z) = \prod_{j=1}^N \left(1 - \frac{z}{X_j}\right)$ - a random polynomial vanishing at X_j 's. The coefficient of z^k in f_N is $(-1)^k$ times the elementary symmetric polynomial

$$e_{k,N} = \sum_{1 \leq j_1 < j_2 < \ldots < j_k \leq N} X_{j_1} X_{j_2} \ldots X_{j_k}.$$

Suppose $X_j, j \in \mathbb{N}$, are I.I.D. with $\mathbb{P}(X_j = +1) = \mathbb{P}(X_j = -1) = \frac{1}{2}$.

Let $f_N(z) = \prod_{j=1}^N \left(1 - \frac{z}{X_j}\right)$ - a random polynomial vanishing at X_j 's. The coefficient of z^k in f_N is $(-1)^k$ times the elementary symmetric polynomial

$$e_{k,N} = \sum_{1 \leq j_1 < j_2 < \ldots < j_k \leq N} X_{j_1} X_{j_2} \ldots X_{j_k}.$$

We wish to study the behavior of these elementary symmetric polynomials.

16 / 31

Behavior of a normalized $e_{k,N}$ for varying k and fixed N

3

(日) (周) (三) (三)

Behavior of a normalized $e_{k,N}$ for varying k and fixed N

Sneha Dey Subramanian (UC Irvine) Critical points of random analytic functions

э

Explanation of sinusoidal behavior

Theorem (Pemantle and S., 2014)

Let $X_1, X_2, ...$ be i.i.d. Rademacher random variables. Let $e_{k,N}$ be the kth elementary symmetric function of $X_1, X_2, ... X_N$, $\alpha = \frac{X_1 + X_2 + ... + X_N}{\sqrt{N}}$ and $\Theta = \arctan\left(\frac{e_{k,N}}{\sqrt{\frac{k}{N}}e_{k+1,N}}\right)$. Then, if d_H is the Hausdorff distance between

$$\mathcal{Y} := \left\{ \left(t, -\sin\left(\frac{t\alpha}{4} - \Theta\right)\right) : 0 \le t \le M \right\}$$

and

$$\equiv := \left\{ \left(t, \frac{e_{k+t\sqrt{k},N}}{\sqrt{e_{k,N}^2 + \frac{k}{N}e_{k+1,N}^2}} \cdot \left(\frac{k}{N}\right)^{t\sqrt{k}/2} \right) : t = 0, \frac{4}{\sqrt{k}}, \frac{8}{\sqrt{k}}, ..., \lfloor M \rfloor_0 \right\}$$

where $\lfloor M \rfloor_0$ is the highest value that is $\leq M$ and equals a multiple of $4/\sqrt{k}$, and M is any positive integer, then,

$$d_H \xrightarrow{P} 0$$

as $k \to \infty$, $N \to \infty$ under the constraint that $N/k^2 \to \infty$. Sneha Dey Subramanian (UC Irvine) Critical points of random analytic functions

Cauchy's integral formula: For a simple loop Γ around 0,

$$f_N^{(k)}(0) = \frac{k!}{2\pi i} \int_{\Gamma} \frac{f_N(z)}{z^{k+1}} dz,$$

3

イロト イポト イヨト イヨト

Cauchy's integral formula: For a simple loop Γ around 0,

$$f_{N}^{(k)}(0) = \frac{k!}{2\pi i} \int_{\Gamma} \frac{f_{N}(z)}{z^{k+1}} dz,$$

$$\implies k! (-1)^{k} e_{k,N} = \frac{k!}{2\pi i} \int_{\Gamma} \frac{f_{N}(z)}{z^{k+1}} dz,$$

3

イロト イポト イヨト イヨト

Cauchy's integral formula: For a simple loop Γ around 0,

$$f_N^{(k)}(0) = \frac{k!}{2\pi i} \int_{\Gamma} \frac{f_N(z)}{z^{k+1}} dz,$$

$$\implies k! (-1)^k e_{k,N} = \frac{k!}{2\pi i} \int_{\Gamma} \frac{f_N(z)}{z^{k+1}} dz,$$

$$\implies e_{k,N} = \frac{(-1)^k}{2\pi i} \int_{\Gamma} \frac{f_N(z)}{z^{k+1}} dz.$$

3

イロト イポト イヨト イヨト

Cauchy's integral formula: For a simple loop Γ around 0,

$$f_N^{(k)}(0) = \frac{k!}{2\pi i} \int_{\Gamma} \frac{f_N(z)}{z^{k+1}} dz,$$

$$\implies k! (-1)^k e_{k,N} = \frac{k!}{2\pi i} \int_{\Gamma} \frac{f_N(z)}{z^{k+1}} dz,$$

$$\implies e_{k,N} = \frac{(-1)^k}{2\pi i} \int_{\Gamma} \frac{f_N(z)}{z^{k+1}} dz.$$

The trick is to choose a Γ "of steepest descent" by finding where the saddle points of $f_N(z)/z^k$ are.

イロト 不得 トイヨト イヨト 二日

Suppose
$$\sigma_{k,N}$$
 and $\overline{\sigma_{k,N}}$ are the critical points of $\log\left(\frac{f_N(z)}{z^k}\right)$.

Sneha Dey Subramanian (UC Irvine) Critical points of random analytic functions

3

<ロ> (日) (日) (日) (日) (日)

Suppose $\sigma_{k,N}$ and $\overline{\sigma_{k,N}}$ are the critical points of $\log\left(\frac{f_N(z)}{z^k}\right)$. We choose Γ to be the circle centered at 0 with radius $|\sigma_{k,N}|$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Suppose $\sigma_{k,N}$ and $\overline{\sigma_{k,N}}$ are the critical points of log $\left(\frac{f_N(z)}{z^k}\right)$. We choose Γ to be the circle centered at 0 with radius $|\sigma_{k,N}|$.

Lemma

$$\sigma_{k,N} \sim i \sqrt{\frac{k}{N}}$$
 in probability, and likewise, $\overline{\sigma_{k,N}} \sim -i \sqrt{\frac{k}{N}}$ in probability, as $N \to \infty, k \to \infty, N/k \to \infty.$

Suppose $\sigma_{k,N}$ and $\overline{\sigma_{k,N}}$ are the critical points of log $\left(\frac{f_N(z)}{z^k}\right)$. We choose Γ to be the circle centered at 0 with radius $|\sigma_{k,N}|$.

Lemma

$$\sigma_{k,N} \sim i \sqrt{\frac{k}{N}}$$
 in probability, and likewise, $\overline{\sigma_{k,N}} \sim -i \sqrt{\frac{k}{N}}$ in probability, as $N \to \infty, k \to \infty, N/k \to \infty.$

[For the rest of this talk, we shall use σ and $\overline{\sigma}$ instead of $\sigma_{k,N}$ and $\overline{\sigma_{k,N}}$, for ease of notation.]

Proposition (Pemantle and S., 2014)

$$\begin{split} e_{k,N} &= (-1)^k \, \Re \left\{ (1+\eta_{k,N}) \, \frac{f_N(\sigma)}{\sigma^k} \frac{1}{\sqrt{\pi k}} \right\} \\ &= \left(\frac{N-k}{k} \right)^{k/2} \, \Re \left\{ i^k \, (1+\eta_{k,N}) \, f_N(\sigma) e^{-ik\theta} \frac{1}{\sqrt{\pi k}} \right\}, \end{split}$$

where $\eta_{k,N} \to 0$ as $N \to \infty, k \to N/k^2 \to \infty$ where $\theta = \arg(\sigma - \pi/2)$.

Sneha Dey Subramanian (UC Irvine) Critical points of random analytic functions

3

くほと くほと くほと

Proposition (Pemantle and S., 2014)

$$egin{aligned} e_{k,N} &= (-1)^k \, \Re \left\{ (1+\eta_{k,N}) \, rac{f_N(\sigma)}{\sigma^k} rac{1}{\sqrt{\pi \, k}}
ight\} \ &= \left(rac{N-k}{k}
ight)^{k/2} \, \Re \left\{ i^k \, (1+\eta_{k,N}) \, f_N(\sigma) e^{-ik heta} rac{1}{\sqrt{\pi \, k}}
ight\}, \end{aligned}$$

where $\eta_{k,N} \to 0$ as $N \to \infty, k \to N/k^2 \to \infty$ where $\theta = \arg(\sigma - \pi/2)$.

This expression for the symmetric polynomials of the i.i.d. Rademacher random variables lead to the theorem regarding their sinusoidal behavior.

・ 同 ト ・ 三 ト ・ 三 ト

21 / 31

3

(日) (周) (三) (三)

Let $X_j, j \in \mathbb{N}$, denote the points of a Poisson process of intensity 1 on the real line.

くほと くほと くほと

Let $X_j, j \in \mathbb{N}$, denote the points of a Poisson process of intensity 1 on the real line.

We consider, for $x \in \mathbb{R}$,

$$f_x(z) := \lim_{N \to \infty} \prod_{|X_j - x| \le N} \left(1 - \frac{z}{X_j}\right).$$

周 ト イ ヨ ト イ ヨ ト

Let $X_j, j \in \mathbb{N}$, denote the points of a Poisson process of intensity 1 on the real line.

We consider, for $x \in \mathbb{R}$,

$$f_{\scriptscriptstyle X}(z) := \lim_{N o \infty} \prod_{|X_j - x| \le N} \left(1 - rac{z}{X_j}
ight).$$

Does $f_x(z)$ exist? Is it analytic in some domain? Is it entire?

・聞き くほき くほき 二日

Lemma (Pemantle and S., submitted, 2014)

For all $x \in \mathbb{C}$, the product in $f_x(z)$ converges, with probability 1, uniformly in compact subsets of \mathbb{C} , making f_x an entire function.

Lemma (Pemantle and S., submitted, 2014)

For all $x \in \mathbb{C}$, the product in $f_x(z)$ converges, with probability 1, uniformly in compact subsets of \mathbb{C} , making f_x an entire function. Moreover, for each k, the law of the zero set of $f_x^{(k)}(z)$ does not depend on x.

Lemma (Pemantle and S., submitted, 2014)

For all $x \in \mathbb{C}$, the product in $f_x(z)$ converges, with probability 1, uniformly in compact subsets of \mathbb{C} , making f_x an entire function. Moreover, for each k, the law of the zero set of $f_x^{(k)}(z)$ does not depend on x.

Write
$$f(z) := f_0(z) = \lim_{N o \infty} \prod_{|X_j| \le N} \left(1 - rac{z}{X_j}\right).$$

Elementary Symmetric Functions of $\frac{1}{X_i}$'s

The coefficient of z^k in f is $(-1)^k$ times the elementary symmetric functions

$$e_k := \lim_{N \to \infty} e_{k,N} = \lim_{N \to \infty} \sum_{j_1 < j_2 < \ldots < j_k : |X_{j_1}| \le N} \frac{1}{X_{j_1} X_{j_2} \ldots X_{j_k}}.$$

4 AR & 4 E & 4 E &

Elementary Symmetric Functions of $\frac{1}{X_i}$'s

The coefficient of z^k in f is $(-1)^k$ times the elementary symmetric functions

$$e_k := \lim_{N \to \infty} e_{k,N} = \lim_{N \to \infty} \sum_{j_1 < j_2 < \ldots < j_k : |X_{j_i}| \le N} \frac{1}{X_{j_1} X_{j_2} \ldots X_{j_k}}.$$

As before, we can use Cauchy's integral formula:

$$e_k=\frac{(-1)^k}{2\pi i}\int_{\Gamma}\frac{f(z)}{z^{k+1}}dz,$$

 Γ being any simple loop around the origin.

Behavior of a normalized $e_{k,N}$ for varying k and fixed N

Sneha Dey Subramanian (UC Irvine) Critical points of random analytic functions

3

Image: A math a math

Behavior of a normalized $e_{k,N}$ for varying k and fixed N

Sneha Dey Subramanian (UC Irvine) Critical points of random analytic functions

December 6, 2014 25 / 31

Again, we let
$$\sigma_k$$
 and $\overline{\sigma_k}$ be critical points of $\log\left(\frac{f(z)}{z^k}\right)$.

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Again, we let σ_k and $\overline{\sigma_k}$ be critical points of $\log\left(\frac{f(z)}{z^k}\right)$. But wait, there are too many of them!

3

イロト 不得下 イヨト イヨト

Again, we let σ_k and $\overline{\sigma_k}$ be critical points of $\log\left(\frac{f(z)}{z^k}\right)$. But wait, there are too many of them!

Theorem (Pemantle and S., submitted, 2014)

Let $E_{M,k}$ be the event that the logarithmic derivative of $\frac{f(z)}{z^k}$ has a unique zero in a ball of radius $M\sqrt{k}$ about ik/π . Then $\mathbb{P}(E_{M,k}) \to 1$ as $M, k \to \infty$ with $k \ge 4\pi^2 M^2$.

Again, we let σ_k and $\overline{\sigma_k}$ be critical points of $\log\left(\frac{f(z)}{z^k}\right)$. But wait, there are too many of them!

Theorem (Pemantle and S., submitted, 2014)

Let $E_{M,k}$ be the event that the logarithmic derivative of $\frac{f(z)}{z^k}$ has a unique zero in a ball of radius $M\sqrt{k}$ about ik/π . Then $\mathbb{P}(E_{M,k}) \to 1$ as $M, k \to \infty$ with $k \ge 4\pi^2 M^2$.

So we choose σ_k and $\overline{\sigma_k}$ as per the above theorem, and let Γ be the circle centered at 0 with radius $|\sigma_k|$.

Expression for e_k

Theorem (Pemantle and S., *submitted*, 2014) For fixed r,

$$e_{k+r} = 2(-1)^{k+r} \Re \left\{ (1+o(1)) \frac{f_N(\sigma_k)}{\sigma_k^{k+r}} \sqrt{\frac{1}{2\pi k}} \right\},$$

in probability as $k \to \infty$.

3

-

47 ▶

Two step ratio for the e_k 's

Proposition (Pemantle and S., submitted, 2014)

If $\{X_j\}_j$ denote the points of a Poisson process of intensity 1 on \mathbb{R} , and e_k is the kth elementary symmetric function of $1/X_i$'s, then

$$\frac{k^2 e_{k+2}}{e_k} \xrightarrow{P} -\pi^2.$$
Resultant zero set on repeatedly differentiating f

Theorem (Pemantle and S., submitted, 2014)

If $\{X_j\}_j$ denote the points of a Poisson process of intensity 1 on \mathbb{R} , and

$$f(z) = \lim_{N \to \infty} \prod_{|X_j| \le N} \left(1 - \frac{z}{X_j}\right),$$

then, the zero set of the nth derivative, $f^{(n)}$, of f converges as $n \to \infty$ in distribution to $\mathbb{Z} + \mathcal{U}$, where $\mathcal{U} \sim Uniform(0, 1)$.

References

Zakhar Kabluchko (2012)

Critical points of random polynomials with independent identically distributed roots

arXiv:1206.6692

The distribution of zeros of the derivative of a random polynomial arXiv:1109.5975

Robin Pemantle and Sneha Subramanian (2014)

Zeros of a random analytic function approach perfect spacing under repeated differentiation

arXiv:1409.7956

Sneha Subramanian (2012)

On the distribution of critical points of a polynomial *Electron. Commun. Probab.* Vol. 17, No. 37, 1-9

Thank You!

Sneha Dey Subramanian (UC Irvine) Critical points of random analytic functions

3